cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242741 Primes p such that p^2 divides 15^(p-1) - 1.

This page as a plain text file.
%I A242741 #17 May 17 2019 14:43:07
%S A242741 29131,119327070011
%N A242741 Primes p such that p^2 divides 15^(p-1) - 1.
%C A242741 Base 15 Wieferich primes. According to Richard Fischer there is no other term up to approximately 5*10^13.
%H A242741 Amir Akbary and Sahar Siavashi, <a href="http://math.colgate.edu/~integers/s3/s3.Abstract.html">The Largest Known Wieferich Numbers</a>, INTEGERS, 18(2018), A3. See Table 1 p. 5.
%H A242741 R. Fischer, <a href="http://www.fermatquotient.com/FermatQuotienten/FermQ_Sort">Thema: Fermatquotient B^(P-1) == 1 (mod P^2)</a>
%t A242741 Select[Prime[Range[1000000]], PowerMod[15, # - 1, #^2] == 1 &] (* _Robert Price_, May 17 2019 *)
%o A242741 (PARI)
%o A242741 forprime(n=2, 10^9, if(Mod(15, n^2)^(n-1)==1, print1(n, ", ")));
%Y A242741 Cf. A001220, A014127, A123692, A212583, A123693, A045616, A111027, A128667, A234810
%K A242741 nonn,hard,bref,more
%O A242741 1,1
%A A242741 _Felix Fröhlich_, May 21 2014