A242752 Primes p such that pi(p) is a primitive root modulo p, where pi(p) is the number of primes not exceeding p.
2, 3, 5, 13, 17, 29, 31, 41, 47, 61, 89, 101, 107, 137, 167, 179, 193, 197, 223, 229, 251, 257, 263, 271, 293, 313, 337, 347, 353, 379, 401, 431, 439, 487, 499, 587, 593, 599, 601, 643, 647, 653, 659, 677, 701, 727, 733, 739, 751, 797, 821, 823, 829, 857, 919, 929, 941, 967, 971, 983
Offset: 1
Keywords
Examples
a(3) = 5 since 5 is prime with pi(5) = 3 a primitive root modulo 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
dv[n_]:=Divisors[n] n=0;Do[Do[If[Mod[k^(Part[dv[Prime[k]-1],j]),Prime[k]]==1,Goto[aa]],{j,1,Length[dv[Prime[k]-1]]-1}];n=n+1;Print[n," ",Prime[k]];Label[aa];Continue,{k,1,166}]
Comments