This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242756 #12 Jun 03 2014 09:14:15 %S A242756 6,9,22,25,26,33,35,38,39,55,58,62,65,69,82,85,86,93,95,202,203,205, %T A242756 206,209,226,235,253,259,262,265,289,295,298,299,302,303,305,309,323, %U A242756 326,329,335,339,355,358,362,365,382,386,393,395,398,502,505,526,529,533 %N A242756 Semiprimes having only the curved digits. %C A242756 A curved-digit semiprime has only the curved digits, i.e., 0, 2, 3, 5, 6, 8 or 9. %H A242756 K. D. Bajpai, <a href="/A242756/b242756.txt">Table of n, a(n) for n = 1..3484</a> %e A242756 358 = 2 * 179 is semiprime having only the curved digits 3, 5 and 8. Hence appears in the sequence. %e A242756 689 = 13 * 53 is semiprime having only the curved digits 6, 8 and 9. Hence appears in the sequence. %t A242756 A242756 = {}; Do[a = PrimeOmega[n];If[a == 2 && Intersection[IntegerDigits[n], {1, 4, 7}] == {}, AppendTo[A242756, n]], {n, 1000}]; A242756 %o A242756 (PARI) s=[]; for(n=1, 600, if(bigomega(n)==2 && setintersect(vecsort(digits(n), , 8), [1,4,7])==[], s=concat(s, n))); s \\ _Colin Barker_, Jun 03 2014 %Y A242756 Cf. A028374, A001358, A034470. %K A242756 nonn,base %O A242756 1,1 %A A242756 _K. D. Bajpai_, May 22 2014