This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242761 #13 Feb 16 2025 08:33:22 %S A242761 6,5,9,4,6,2,6,7,0,4,4,9,0,0,0,8,5,7,1,7,3,7,2,6,8,1,5,5,6,7,0,9,7,1, %T A242761 0,3,2,8,9,3,9,1,7,8,2,8,7,5,6,9,7,9,0,2,2,3,6,7,6,3,8,9,4,6,2,2,2,0, %U A242761 8,0,3,0,5,4,1,0,3,7,6,1,5,3,5,7,4,7,1,9,1,8,1,1,0,9,4,2,8,6,9,0 %N A242761 Decimal expansion of the escape probability for a random walk on the 3-D cubic lattice (a Polya random walk constant). %D A242761 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.9, p. 322. %H A242761 G. C. Greubel, <a href="/A242761/b242761.txt">Table of n, a(n) for n = 0..10000</a> %H A242761 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/PolyasRandomWalkConstants.html">Polya's Random Walk Constants</a> %F A242761 Equals (16*sqrt(2/3)*Pi^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)), where Gamma is the Euler Gamma function. %e A242761 0.6594626704490008571737268155670971... %t A242761 p = (16*Sqrt[2/3]*Pi^3)/(Gamma[1/24]*Gamma[5/24]*Gamma[7/24]*Gamma[11/24]); RealDigits[p, 10, 100] // First %o A242761 (PARI) default(realprecision, 100); (16*sqrt(2/3)*Pi^3)/(gamma(1/24)* gamma(5/24)*gamma(7/24)*gamma(11/24)) \\ _G. C. Greubel_, Oct 26 2018 %o A242761 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (16*Sqrt(2/3)*Pi(R)^3)/(Gamma(1/24)*Gamma(5/24)*Gamma(7/24)*Gamma(11/24)); // _G. C. Greubel_, Oct 26 2018 %Y A242761 Cf. A086230, A086231, A086232-A086236, A043546, A293237, A293238, A242812-A242816. %K A242761 nonn,cons %O A242761 0,1 %A A242761 _Jean-François Alcover_, May 22 2014