This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242763 #118 Oct 24 2024 01:26:56 %S A242763 1,1,1,1,1,1,1,2,2,2,2,2,3,3,4,4,4,5,5,7,7,8,9,9,12,12,15,16,17,21,21, %T A242763 27,28,32,37,38,48,49,59,65,70,85,87,107,114,129,150,157,192,201,236, %U A242763 264,286,342,358,428,465,522,606,644,770,823,950,1071,1166,1376 %N A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7. %C A242763 Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor. %C A242763 Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences. %H A242763 Colin Barker, <a href="/A242763/b242763.txt">Table of n, a(n) for n = 1..1000</a> %H A242763 Julia Collins, <a href="https://botanicamathematica.wordpress.com/2014/04/01/fibonacci-tree/">Fibonacci Tree</a> %H A242763 Fractal Foundation, <a href="http://fractalfoundation.org/OFC/OFC-11-1.html">Fibonacci Fractals</a> %H A242763 D. H. Lehmer, <a href="http://www.jstor.org/stable/1968235">An extended theory of Lucas' functions</a>, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448. %H A242763 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1,0,1). %F A242763 Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor. %F A242763 G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - _Colin Barker_, Oct 09 2016 %F A242763 Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1. %e A242763 For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3. %t A242763 LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (* or *) %t A242763 CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* _Robert G. Wilson v_, Nov 25 2016 *) %t A242763 nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* _Harvey P. Dale_, Oct 22 2024 *) %o A242763 (PARI) Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ _Colin Barker_, Oct 27 2016 %o A242763 (Magma) [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // _Vincenzo Librandi_, Nov 30 2016 %o A242763 (SageMath) %o A242763 @CachedFunction # a = A242763 %o A242763 def a(n): return 1 if n<8 else a(n-5) +a(n-7) %o A242763 [a(n) for n in range(1,76)] # _G. C. Greubel_, Oct 23 2024 %Y A242763 Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2). %K A242763 nonn,easy %O A242763 1,8 %A A242763 _Vicente Jesús Maniega Granado_, Oct 03 2016