A242769 Decimal expansion of the positive solution to the equation x/(1-x) = 1+log(1/(1-x)), an auxiliary constant associated with the problem of enumeration of trees by inversions.
6, 8, 2, 1, 5, 5, 5, 6, 7, 1, 0, 0, 6, 2, 7, 3, 1, 6, 1, 6, 7, 1, 5, 5, 2, 6, 2, 3, 7, 9, 0, 5, 0, 8, 3, 3, 0, 0, 3, 8, 6, 8, 1, 0, 0, 0, 1, 6, 8, 8, 8, 5, 9, 9, 1, 0, 9, 0, 6, 5, 5, 1, 0, 1, 3, 4, 2, 2, 0, 8, 6, 2, 6, 5, 8, 2, 1, 7, 7, 1, 5, 9, 8, 1, 1, 4, 8, 8, 6, 8, 9, 0, 5, 4, 5, 3, 9, 9, 8, 1
Offset: 0
Examples
0.6821555671006273161671552623790508330038681...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6, p. 303.
Links
- I. M. Gessel, B. E. Sagan, Y. N. Yeh, Enumeration of Trees By Inversions, 1999, p. 20.
Crossrefs
Cf. A038037.
Programs
-
Mathematica
mu = x /. FindRoot[x/(1-x) == 1+Log[1/(1-x)], {x, 1/2}, WorkingPrecision -> 105]; RealDigits[mu, 10, 100] // First