A242776 Primes p such that 2^p + p^2 is not squarefree.
2, 11, 13, 29, 31, 47, 67, 83, 101, 103, 137, 139, 157, 173, 191, 193, 211, 227, 229, 263, 281, 283, 317, 337, 353, 373, 389, 397, 409, 421, 443, 461, 463, 479, 499, 569, 571, 587, 607, 641, 643, 659, 661, 677, 719, 733, 751, 769
Offset: 1
Examples
2 is in this sequence because 2 is prime and 2^2 + 2^2 = 8 is divisible by 2^2. 11 is in this sequence because it is prime and 2^11 + 11^2 = 2169 is divisible by 3^2.
Links
- Kevin P. Thompson, Factorizations to support a(n) for n = 1..47
Programs
-
Magma
[n: n in [1..265] | IsPrime(n) and not IsSquarefree(2^n + n^2)];
-
Mathematica
Select[Prime[Range[25]], MoebiusMu[2^# + #^2] == 0 &] (* Alonso del Arte, May 26 2014 *) Select[Range[100], PrimeQ[#] && ! SquareFreeQ[2^# + #^2] &] (* Amiram Eldar, Dec 24 2020 *)
-
PARI
s=[]; forprime(p=2, 300, if(!issquarefree(2^p+p^2), s=concat(s, p); print1(p, ", "))); s \\ Colin Barker, May 22 2014
Formula
a(n) < (4 + o(1))n log n. - Charles R Greathouse IV, May 27 2014
Extensions
a(21)-a(22) from Charles R Greathouse IV, May 26 2014
a(23)-a(30) from Charles R Greathouse IV, May 27 2014
a(31)-a(34) from Amiram Eldar, Dec 24 2020
a(35)-a(47) from Kevin P. Thompson, Jan 15 2022
a(48) from Kevin P. Thompson, Jun 13 2022
Comments