cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242794 a(n) = [x^n] ( 1 + x*A(x)^n )^(n+1) / (n+1) for n>=0, with a(0)=1.

This page as a plain text file.
%I A242794 #6 May 22 2014 22:32:42
%S A242794 1,1,3,22,257,3986,75304,1653086,40979297,1126004203,33856704386,
%T A242794 1103686134563,38734891315775,1455569736467094,58304721086789654,
%U A242794 2480233978808257526,111686585878084164913,5308774844414927594856,265682854185812938555354,13966882165871163036529423
%N A242794 a(n) = [x^n] ( 1 + x*A(x)^n )^(n+1) / (n+1) for n>=0, with a(0)=1.
%C A242794  Compare to the g.f. G(x) = x + x*G(G(x)) of A030266 that satisfies:
%C A242794 A030266(n+1) = [x^n] ( 1 + G(x) )^(n+1) / (n+1) for n>=0.
%e A242794 G.f.: A(x) = 1 + x + 3*x^2 + 22*x^3 + 257*x^4 + 3986*x^5 + 75304*x^6 +...
%e A242794 Form a table of coefficients of x^k in (1 + x*A(x)^n)^(n+1) like so:
%e A242794 n=0: [1, 1,   0,    0,     0,      0,       0,        0, ...];
%e A242794 n=1: [1, 2,   3,    8,    51,    564,    8539,   159226, ...];
%e A242794 n=2: [1, 3,   9,   34,   210,   2118,   30245,   544962, ...];
%e A242794 n=3: [1, 4,  18,   88,   575,   5472,   73242,  1263604, ...];
%e A242794 n=4: [1, 5,  30,  180,  1285,  12016,  151820,  2490390, ...];
%e A242794 n=5: [1, 6,  45,  320,  2520,  23916,  290162,  4518600, ...];
%e A242794 n=6: [1, 7,  63,  518,  4501,  44310,  527128,  7834548, ...];
%e A242794 n=7: [1, 8,  84,  784,  7490,  77504,  922096, 13224688, ...];
%e A242794 n=8: [1, 9, 108, 1128, 11790, 129168, 1561860, 21921156, ...]; ...
%e A242794 then this sequence is formed from the main diagonal:
%e A242794 [1/1, 2/2, 9/3, 88/4, 1285/5, 23916/6, 527128/7, 13224688/8, ...].
%o A242794 (PARI) {a(n)=local(A=[1,1]);for(m=1,n,A=concat(A,0);A[m+1]=Vec((1+x*Ser(A)^m)^(m+1))[m+1]/(m+1));A[n+1]}
%o A242794 for(n=0,25,print1(a(n),", "))
%Y A242794 Cf. A242795.
%K A242794 nonn
%O A242794 0,3
%A A242794 _Paul D. Hanna_, May 22 2014