This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242817 #50 Jul 27 2021 04:32:37 %S A242817 1,1,6,57,756,12880,268098,6593839,187104200,6016681467,216229931110, %T A242817 8588688990640,373625770888956,17666550789597073,902162954264563306, %U A242817 49482106424507339565,2901159958960121863952,181069240855214001514460,11985869691525854175222222 %N A242817 a(n) = B(n,n), where B(n,x) = Sum_{k=0..n} Stirling2(n,k)*x^k are the Bell polynomials (also known as exponential polynomials or Touchard polynomials). %H A242817 Alois P. Heinz, <a href="/A242817/b242817.txt">Table of n, a(n) for n = 0..370</a> %H A242817 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>. %H A242817 Wikipedia, <a href="https://en.wikipedia.org/wiki/Touchard_polynomials">Touchard polynomials</a> %F A242817 E.g.f.: x*f'(x)/f(x), where f(x) is the generating series for sequence A035051. %F A242817 a(n) ~ (exp(1/LambertW(1)-2)/LambertW(1))^n * n^n / sqrt(1+LambertW(1)). - _Vaclav Kotesovec_, May 23 2014 %F A242817 Conjecture: It appears that the equation a(x)*e^x = Sum_{n=0..oo} ( (n^x*x^n)/n! ) is true for every positive integer x. - _Nicolas Nagel_, Apr 20 2016 [This is just the special case k=x of the formula B(k,x) = e^(-x) * Sum_{n=0..oo} n^k*x^n/n!; see for example the World of Mathematics link. - _Pontus von Brömssen_, Dec 05 2020] %F A242817 a(n) = n! * [x^n] exp(n*(exp(x)-1)). - _Alois P. Heinz_, May 17 2016 %F A242817 a(n) = [x^n] Sum_{k=0..n} n^k*x^k/Product_{j=1..k} (1 - j*x). - _Ilya Gutkovskiy_, May 31 2018 %p A242817 A:= proc(n, k) option remember; `if`(n=0, 1, (1+ %p A242817 add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k) %p A242817 end: %p A242817 a:= n-> A(n$2): %p A242817 seq(a(n), n=0..20); # _Alois P. Heinz_, May 17 2016 %t A242817 Table[BellB[n, n], {n, 0, 100}] %o A242817 (Maxima) a(n):=stirling2(n,0)+sum(stirling2(n,k)*n^k,k,1,n); %o A242817 makelist(a(n),n,0,30); %o A242817 (PARI) a(n) = sum(k=0, n, stirling(n,k,2)*n^k); \\ _Michel Marcus_, Apr 20 2016 %Y A242817 Cf. A035051, A292866, A346654, A346655. %Y A242817 Main diagonal of A189233 and of A292860. %K A242817 nonn %O A242817 0,3 %A A242817 _Emanuele Munarini_, May 23 2014 %E A242817 Name corrected by _Pontus von Brömssen_, Dec 05 2020