A242849 Triangle read by rows: T(n,k) = A060828(n)/(A060828(k) * A060828(n-k)).
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 3, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 3, 9, 9, 3, 9, 9, 1, 1, 1, 9, 3, 3, 9, 3, 3, 9, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 3, 3, 1, 9, 9, 3, 9, 9, 1
Offset: 0
Examples
The triangle begins 1 1 1 1 1 1 1 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 3 3 1 3 3 1.
Links
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
- Tyler Ball and Daniel Juda, Dominance over N, Rose-Hulman Undergraduate Mathematics Journal, Vol. 13, No. 2, Fall 2013.
- E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 7.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Programs
-
Mathematica
s3[n_] := 3^IntegerExponent[n!, 3]; T[n_, k_] := s3[n]/(s3[k] s3[n-k]); Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 06 2018 *)
-
Sage
m=50 T=[0]+[3^valuation(i,3) for i in [1..m]] Table=[[prod(T[1:i+1])/(prod(T[1:j+1])*prod(T[1:i-j+1])) for j in [0..i]] for i in [0..m-1]] [x for sublist in Table for x in sublist]
Comments