This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242856 #48 Jun 04 2024 17:14:10 %S A242856 2,44,224,686,1622,3272,5924,9914,15626,23492,33992,47654,65054,86816, %T A242856 113612,146162,185234,231644,286256,349982,423782,508664,605684, %U A242856 715946,840602,980852,1137944,1313174,1507886,1723472,1961372,2223074,2510114,2824076,3166592 %N A242856 Number of 2-matchings of the n X n grid graph. %C A242856 Number of ways two dominoes can be placed on an n X n chessboard. %H A242856 Alois P. Heinz, <a href="/A242856/b242856.txt">Table of n, a(n) for n = 2..1000</a> %H A242856 Ralf Stephan, <a href="/A242856/a242856_1.pdf">In how many ways can we place two dominoes on the n x n chessboard?</a> Proof of formula. %H A242856 Ralf Stephan, <a href="/A242856/a242856.pdf">Two dominoes on the 3x3 chessboard</a>, illustration of a(3)=44. %H A242856 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a>. %H A242856 <a href="/index/Mat#matchings">Index entries for sequences related to matchings</a>. %H A242856 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A242856 a(n) = 2*n^4 - 4*n^3 - 5*n^2 + 13*n - 4. %F A242856 G.f.: -2*x^2*(x^4-7*x^3+12*x^2+17*x+1) / (x-1)^5. - _Colin Barker_, Jun 26 2014 %F A242856 a(n + 1) = (1/2)*A046092(n)*(A046092(n) - 1) - A016742(n) - A054000(n). - _Nicolas Bělohoubek_, May 15 2024 %F A242856 E.g.f.: 4 - 2*x + exp(x)*(2*x^4 + 8*x^3 - 3*x^2 + 6*x - 4). - _Stefano Spezia_, Jun 04 2024 %t A242856 LinearRecurrence[{5, -10, 10, -5, 1}, {2, 44, 224, 686, 1622}, 50] (* _Paolo Xausa_, May 20 2024 *) %o A242856 (Sage) %o A242856 def a(n): %o A242856 G = Graph(graphs.Grid2dGraph(n,n)) %o A242856 G.relabel() %o A242856 return G.matching_polynomial()[n^2-4] %o A242856 (PARI) Vec(-2*x^2*(x^4-7*x^3+12*x^2+17*x+1)/(x-1)^5 + O(x^100)) \\ _Colin Barker_, Jun 26 2014 %Y A242856 Second column of A242861. Cf. A016742, A046092, A054000, A210662. %K A242856 nonn,easy %O A242856 2,1 %A A242856 _Ralf Stephan_, May 24 2014 %E A242856 a(7)-a(36) from _Alois P. Heinz_, Jun 01 2014