This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242861 #49 Feb 16 2025 08:33:22 %S A242861 1,1,1,4,2,1,12,44,56,18,1,24,224,1044,2593,3388,2150,552,36,1,40,686, %T A242861 6632,39979,157000,407620,695848,762180,510752,192672,35104,2180,1,60, %U A242861 1622,26172,281514,2135356,11785382,48145820,146702793,333518324,562203148 %N A242861 Triangle T(n,k) by rows: number of ways k dominoes can be placed on an n X n chessboard, k>=0. %C A242861 Also, coefficients of the matching-generating polynomial of the n X n grid graph. %C A242861 In the n-th row there are floor(n^2/2)+1 values. %H A242861 Alois P. Heinz, <a href="/A242861/b242861.txt">Rows n = 0..14, flattened</a> %H A242861 Ralf Stephan, <a href="/A242856/a242856.pdf">Two dominoes on the 3x3 chessboard</a>, illustration of T(3,2)=44. %H A242861 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a> %H A242861 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Matching-GeneratingPolynomial.html">Matching-Generating Polynomial</a> %H A242861 Wikipedia, <a href="https://en.wikipedia.org/wiki/Matching_polynomial">Matching polynomial</a> %H A242861 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a> %H A242861 <a href="/index/Mat#matchings">Index entries for sequences related to matchings</a> %F A242861 T(n,1) = A046092(n-1), T(n,2) = A242856(n). %F A242861 T(n,floor(n^2/2)) = A137308(n), T(2n,2n^2) = A004003(n). %F A242861 sum(k>=0, T(n,k)) = A210662(n,n) = A028420(n). %F A242861 T(n,3) = A243206(n), T(n,4) = A243215(n), T(n,5) = A243217(n), T(n,floor(n^2/4)) = A243221(n). - _Alois P. Heinz_, Jun 01 2014 %e A242861 Triangle starts: %e A242861 1 %e A242861 1 %e A242861 1 4 2 %e A242861 1 12 44 56 18 %e A242861 1 24 224 1044 2593 3388 2150 552 36 %e A242861 1 40 686 6632 39979 157000 407620 695848 762180 510752 192672 35104 2180 %e A242861 ... %p A242861 b:= proc(n, l) option remember; local k; %p A242861 if n=0 then 1 %p A242861 elif min(l[])>0 then b(n-1, map(h->h-1, l)) %p A242861 else for k while l[k]>0 do od; expand(`if`(n>1, %p A242861 x*b(n, subsop(k=2, l)), 0) +`if`(k<nops(l) and l[k+1]=0, %p A242861 x*b(n, subsop(k=1, k+1=1, l)), 0) +b(n, subsop(k=1, l))) %p A242861 fi %p A242861 end: %p A242861 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])): %p A242861 seq(T(n), n=0..8); # _Alois P. Heinz_, Jun 01 2014 %t A242861 b[n_, l_List] := b[n, l] = Module[{k}, Which[n == 0, 1, Min[l]>0, b[n-1, l-1], True, For[k=1, l[[k]]>0, k++]; Expand[If[n>1, x*b[n, ReplacePart[l, k -> 2]], 0] + If[k<Length[l] && l[[k+1]] == 0, x*b[n, ReplacePart[l, {k -> 1, k + 1 -> 1}]], 0] + b[n, ReplacePart[l, k -> 1]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, Array[0&, n]]]; Table[T[n], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Jun 16 2015, after _Alois P. Heinz_ *) %o A242861 (Sage) %o A242861 def T(n,k): %o A242861 G = Graph(graphs.Grid2dGraph(n,n)) %o A242861 G.relabel() %o A242861 mu = G.matching_polynomial() %o A242861 return abs(mu[n^2-2*k]) %Y A242861 Cf. A046741, A096713. %K A242861 nonn,tabf %O A242861 0,4 %A A242861 _Ralf Stephan_, May 24 2014