A242867 Discriminants of cubic domains for cubefree n.
1, -108, -243, -108, -675, -972, -1323, -243, -300, -3267, -972, -4563, -5292, -6075, -867, -972, -1083, -2700, -11907, -13068, -14283, -675, -2028, -588, -22707, -24300, -25947, -29403, -31212, -3675, -972, -4107, -38988, -41067, -45387, -47628, -49923, -1452, -6075, -6348, -59643
Offset: 1
Keywords
Examples
a(7) = -1323 because the seventh cubefree number is 7 and Q(7^(1/3)) has -1323 for a discriminant. a(8) = -243 because the eighth cubefree number is 9 and Q(9^(1/3)) is a subdomain of Q(3^(1/3)), which has a discriminant of -243.
References
- Şaban Alaca & Kenneth S. Williams, Introductory Algebraic Number Theory. Cambridge: Cambridge University Press (2004): 176-177, Theorem 7.3.2 on the former page, Table 1 on the latter page.
Crossrefs
Cf. A004709 (cubefree numbers).
Programs
-
Mathematica
DeleteCases[Table[Boole[FreeQ[FactorInteger[n], {, k /; k > 2}]] * NumberFieldDiscriminant[n^(1/3)], {n, 100}], 0]
Comments