This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242869 #23 Jun 08 2014 13:56:33 %S A242869 0,0,0,1,0,1,0,3,0,1,2,1,0,1,0,7,0,1,2,1,0,5,2,1,0,1,0,3,0,1,0,15,0,1, %T A242869 2,1,4,1,2,1,0,1,10,1,0,5,2,1,0,1,0,3,0,1,6,3,0,1,0,3,0,1,0,31,0,1,2, %U A242869 1,4,1,2,1,0,9,2,1,4,1,2,1,0,1,2,1,0,21 %N A242869 Largest integer m < n having a binary expansion that is a prefix and a suffix of the binary expansion of n; a(0)=0. %C A242869 The prefix and the suffix are allowed to overlap. %C A242869 a(n) <= A147755(n). %C A242869 a(2^n) = 0. %C A242869 a(2^n-1) = 2^(n-1)-1 for n>0. %C A242869 a(n) = 0 iff n in { A091065 }. %C A242869 a(n) > 1 iff n in { A091066 }. %C A242869 A029837(a(n)+1) = A091064(n). %H A242869 Alois P. Heinz, <a href="/A242869/b242869.txt">Table of n, a(n) for n = 0..8192</a> %e A242869 a(91) = 11 because 91 = (1011)011_2 = 101(1011)_2 and 11 = 1011_2. %e A242869 a(84) = 0 because 84 = 1010100_2, only the empty bitstring is a proper prefix and suffix. %p A242869 a:= proc(n) local m; m:=n; %p A242869 while m>1 do m:= iquo(m, 2); %p A242869 if m=irem(n, 2^(1+ilog2(m))) then return m fi %p A242869 od; 0 %p A242869 end: %p A242869 seq(a(n), n=0..100); %Y A242869 Cf. A147755. %K A242869 nonn,base,look %O A242869 0,8 %A A242869 _Alois P. Heinz_, May 24 2014