This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242886 #26 May 22 2025 10:21:37 %S A242886 3,3,419,132749,514664471,1164166301,364231372931 %N A242886 Smallest prime p_n which generates n primes of the form (p^i + 2) where i represents the first n odd numbers. %C A242886 The first 4 entries of this sequence are the first entry of the following sequences: %C A242886 a. A001359: Lesser of twin primes. %C A242886 b. A240110: Primes p such that p + 2 and p^3 + 2 are also prime. %C A242886 c. A242326: Primes p for which p + 2, p^3 + 2, and p^5 + 2 are also prime. %C A242886 d. A242327: Primes p for which (p^n) + 2 is prime for n = 1, 3, 5, and 7. %C A242886 a(8) > 10^14. - _Bert Dobbelaere_, Aug 31 2020 %e A242886 For n = 1, p = 3 generates primes of the form p^n + 2; for i = 1, %e A242886 p + 2 = 5 (prime). %e A242886 For n = 2, p = 3 generates primes of the form p^n + 2; for i = 1 and 3, %e A242886 p + 2 = 5 (prime) and p^3 + 2 = 29 (prime). %e A242886 For n = 3, p = 419 generates primes of the form p^n + 2; for i = 1, 3, and 5, p + 2 = 421 (prime), p^3 + 2 = 73560061 (prime), and p^5 + 2 = 12914277518101 (prime). %o A242886 (Python) %o A242886 import sympy %o A242886 ## isp_list returns an array of true/false for prime number test for a %o A242886 ## list of numbers %o A242886 def isp_list(ls): %o A242886 pt=[] %o A242886 for a in ls: %o A242886 if sympy.ntheory.isprime(a)==True: %o A242886 pt.append(True) %o A242886 return(pt) %o A242886 co=1 %o A242886 while co < 7: %o A242886 al=0 %o A242886 n=2 %o A242886 while al!=co: %o A242886 d=[] %o A242886 for i in range(0,co): %o A242886 d.append(int(n**((2*i)+1))+2) %o A242886 al=isp_list(d).count(True) %o A242886 if al==co: %o A242886 ## Prints prime number and its corresponding sequence d %o A242886 print(n,d) %o A242886 n=sympy.ntheory.nextprime(n) %o A242886 co=co+1 %Y A242886 Cf. A001359, A240110, A242326, A242327. %K A242886 nonn,hard,more %O A242886 1,1 %A A242886 _Abhiram R Devesh_, May 25 2014 %E A242886 a(7) from _Bert Dobbelaere_, Aug 30 2020