cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242897 Catalan numbers C(n) such that sum of the factorials of digits of C(n) is semiprime.

This page as a plain text file.
%I A242897 #14 Dec 13 2022 17:59:59
%S A242897 14,42,132,4862,35357670,1767263190,91482563640,4861946401452,
%T A242897 212336130412243110,2622127042276492108820,10113918591637898134020,
%U A242897 39044429911904443959240,116157871455782434250553845880,6852456927844873497549658464312,368479169875816659479009042713546950
%N A242897 Catalan numbers C(n) such that sum of the factorials of digits of C(n) is semiprime.
%C A242897 The n-th Catalan number is C(n) = (2*n)!/(n!*(n+1)!).
%C A242897 a(347), having 998 digits, is the last term in b-file.
%C A242897 a(348) has 1003 digits, hence is not included in b-file.
%C A242897 Intersection of A000108 and A242868.
%H A242897 K. D. Bajpai, <a href="/A242897/b242897.txt">Table of n, a(n) for n = 1..347</a>
%e A242897 a(2) = 42 = (2*5)!/(5!*(5+1)!) is 5th Catalan number: 4!+2! = 26 = 2 * 13 which is semiprime.
%e A242897 a(4) = 4862 = (2*9)!/(9!*(9+1)!) is 9th Catalan number: 4!+8!+6!+2! = 41066 = 2 * 20533 which is semiprime.
%p A242897 with(numtheory): A242897:= proc() if bigomega(add( i!,i = convert(((2*n)!/(n!*(n+1)!)), base, 10))((2*n)!/(n!*(n+1)!)))=2  then RETURN ((2*n)!/(n!*(n+1)!)); fi; end: seq(A242897 (), n=1..100);
%t A242897 Select[CatalanNumber[Range[70]],PrimeOmega[Total[IntegerDigits[#]!]]==2&] (* _Harvey P. Dale_, Dec 13 2022 *)
%Y A242897 Cf. A000108, A001358, A061602, A242855, A242868.
%K A242897 nonn,base,less
%O A242897 1,1
%A A242897 _K. D. Bajpai_, May 25 2014