cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242908 Decimal expansion of exp(7*zeta(3)/(2*Pi^2)).

This page as a plain text file.
%I A242908 #19 Sep 04 2024 15:56:03
%S A242908 1,5,3,1,5,4,7,0,9,6,6,8,7,4,5,7,7,7,6,6,4,0,7,7,7,8,6,5,1,3,5,8,0,2,
%T A242908 0,6,0,2,0,1,7,8,3,3,7,6,9,0,3,6,4,8,9,9,8,8,4,5,6,2,7,8,7,1,4,2,8,8,
%U A242908 5,1,7,5,2,7,6,9,8,6,5,6,2,0,7,8,3,8,0,2,3,7,7,6,3,8,6,3,8,5,4,1
%N A242908 Decimal expansion of exp(7*zeta(3)/(2*Pi^2)).
%D A242908 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 3.10 Kneser-Mahler polynomial constants, p. 234.
%H A242908 Antonio Gracia Llorente, <a href="https://doi.org/10.5281/zenodo.13684827">Infinite Product Formula Involving the Apery's Constant</a>, Zenodo Preprint, 2024.
%H A242908 C. J. Smyth, <a href="http://dx.doi.org/10.1017/S0004972700006894">On measures of polynomials in several variables</a>, Bulletin of the Australian Mathematical Society, Volume 23, Issue 1 (1981), pp. 49-63.
%F A242908 M(1 + x + y + z) where M is Mahler's measure for multivariate polynomials.
%F A242908 Equals sqrt(2) * Product_{k>=1} (1 + 1/(4*k^2 - 1))^(4*k^2) * (1 - 2/(2*k + 1))^k. - _Antonio Graciá Llorente_, Sep 02 2024
%e A242908 1.5315470966874577766407778651358020602...
%t A242908 RealDigits[Exp[7*Zeta[3]/(2*Pi^2)], 10, 100] // First
%Y A242908 Cf. A002117, A242909, A242910.
%K A242908 nonn,cons
%O A242908 1,2
%A A242908 _Jean-François Alcover_, May 26 2014