This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242910 #13 Jan 10 2017 02:38:38 %S A242910 1,4,3,5,9,1,2,6,3,1,6,1,1,7,7,3,1,2,4,7,7,2,2,4,7,2,4,0,2,8,9,9,6,5, %T A242910 4,5,0,5,9,0,9,4,3,5,6,3,2,5,6,1,1,3,1,4,6,6,8,0,0,5,8,1,9,4,7,3,5,0, %U A242910 3,2,5,4,8,0,4,2,8,4,7,9,0,6,1,6,2,1,3,1,8,5,4,5,7,8,0,1,7,5,8,7 %N A242910 Decimal expansion of exp(sqrt(Pi/24)). %D A242910 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 3.10 Kneser-Mahler polynomial constants p. 234. %H A242910 G. C. Greubel, <a href="/A242910/b242910.txt">Table of n, a(n) for n = 1..5000</a> %H A242910 C. J. Smyth, <a href="http://dx.doi.org/10.1017/S0004972700006894">On measures of polynomials in several variables</a>, Bulletin of the Australian Mathematical Society, Volume 23 (1981), Issue 01. %F A242910 Lim_(m->infinity) M(z_1 + (1 + z_2)*(1 + z_3)*...*(1 + z_m))^(1/sqrt(m)), where M is Mahler's measure for multivariate polynomials. %e A242910 1.43591263161177312477224724028996545059... %p A242910 Digits:=100: evalf(exp(sqrt(Pi/24))); # _Wesley Ivan Hurt_, Jan 09 2017 %t A242910 RealDigits[Exp[Sqrt[Pi/24]], 10, 100] // First %o A242910 (PARI) exp(sqrt(Pi/24)) \\ _G. C. Greubel_, Jan 09 2017 %Y A242910 Cf. A242908, A242909. %K A242910 nonn,cons %O A242910 1,2 %A A242910 _Jean-François Alcover_, May 26 2014