This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242921 #24 Nov 09 2017 08:46:11 %S A242921 0,1,3,4,7,8,10,11,15,17,18,20,25,27,28,31,32,34,35,38,42,43,45,46,53, %T A242921 55,58,59,61,62,67,68,70,71,79,81,85,87,90,92,93,98,102,105,112,114, %U A242921 115,119,121,126,129,130,132,133,136,140,141,143,144,148 %N A242921 Lexicographically least increasing sequence avoiding double 3-term arithmetic progressions. %C A242921 a(0) = 0, a(1) = 1, and for n >= 2, a(n) is the least integer t > a(n-1) such that for all 0 < i <= n/2 we have a(n-2i)+t <> 2a(n-i). %C A242921 By double arithmetic sequence it is meant that both the indices and the values are in arithmetic progression. %H A242921 Alois P. Heinz, <a href="/A242921/b242921.txt">Table of n, a(n) for n = 0..10000</a> %H A242921 T. Brown, V. Jungic, and A. Poelstra, <a href="http://arxiv.org/abs/1304.1829">On double 3-term arithmetic progressions</a>, arxiv preprint, November 2013. %e A242921 a(8) = 15: 12 is not in the sequence because a(6) = 10, a(7) = 11; 13 is not in the sequence because a(4) = 7, a(6) = 10; 14 is not in the sequence because a(0) = 0, a(4) = 7, so a(8) = 15. %p A242921 a:= proc(n) option remember; local i, t, ok; %p A242921 if n<2 then n %p A242921 else for t from 1+a(n-1) do ok:=true; %p A242921 for i to n/2 while ok %p A242921 do ok:=a(n-2*i)+t <> 2*a(n-i) od; %p A242921 if ok then return t fi %p A242921 od %p A242921 fi %p A242921 end: %p A242921 seq(a(n), n=0..100); # _Alois P. Heinz_, May 26 2014 %t A242921 a[n_] := a[n] = Module[{i, t, ok}, If[n<2, n, For[t = 1+a[n-1], True, t++, ok = True; i = 1; While[ok && i <= n/2, ok = a[n-2*i]+t != 2*a[n-i]; i++]; If[ok, Return[t]]]]]; %t A242921 Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Nov 09 2017, after _Alois P. Heinz_ *) %Y A242921 Differs from A094870 in that sequence must be increasing. %Y A242921 Cf. A003278, A229037. %K A242921 nonn %O A242921 0,3 %A A242921 _Jeffrey Shallit_, May 26 2014