A242938 Decimal expansion of c_e, coefficient associated with the asymptotic evaluation c_e*2^(n^2/4) of the number of subspaces of the n-dimensional vector space over the finite field F_2, n being even.
7, 3, 7, 1, 9, 6, 8, 8, 0, 1, 4, 6, 1, 3, 1, 6, 5, 0, 9, 1, 5, 3, 1, 9, 1, 2, 0, 8, 2, 6, 8, 0, 9, 1, 5, 8, 8, 8, 5, 8, 7, 6, 3, 5, 4, 7, 2, 2, 6, 6, 2, 2, 6, 6, 8, 9, 4, 3, 5, 4, 6, 1, 0, 4, 2, 3, 1, 0, 1, 5, 6, 7, 4, 3, 0, 0, 0, 7, 2, 8, 9, 4, 4, 7, 5, 7, 0, 8, 8, 2, 4, 7, 8, 0, 5, 5, 6, 9, 9, 5
Offset: 1
Examples
7.3719688014613165091531912...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.7 Lengyel's constant, p. 318.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2500
Programs
-
Mathematica
digits = 100; EllipticTheta[3, 0, 1/2]/NProduct[1-2^(-j), {j, 1, Infinity}, WorkingPrecision -> digits + 10, NProductFactors -> digits] // RealDigits[#, 10, digits]& // First RealDigits[EllipticTheta[3, 0, 1/2]/QPochhammer[1/2, 1/2], 10, 100][[1]] (* Vladimir Reshetnikov, Oct 17 2016 *)
-
PARI
th3(x)=1 + 2*suminf(n=1,x^n^2) th3(1/2)/prodinf(n=1,1-2.^-n) \\ Charles R Greathouse IV, Jun 06 2016
Formula
(Sum_(k=-infinity..infinity) q^(-k^2)) / (prod_(j>0) (1-q^(-j))), with q = 2.