A242943 Decimal expansion of the mean car density associated with Solomon's variation in Renyi's one-dimensional parking problem.
8, 0, 8, 6, 5, 2, 5, 1, 8, 3, 5, 0, 2, 1, 2, 2, 4, 4, 9, 1, 5, 4, 2, 1, 9, 2, 9, 4, 0, 9, 6, 8, 0, 3, 2, 9, 4, 4, 1, 0, 8, 0, 1, 2, 4, 7, 1, 3, 8, 6, 9, 4, 8, 5, 4, 3, 2, 2, 5, 1, 2, 9, 6, 6, 5, 4, 1, 3, 2, 3, 3, 2, 7, 9, 2, 6, 9, 5, 3, 9, 1, 2, 7, 4, 5, 5, 1, 6, 0, 4, 9, 1, 0, 4, 7, 7, 8, 9, 1, 8, 7, 2
Offset: 0
Examples
0.808652518350212244915421929409680329441...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Renyi's parking constant, p. 279.
Links
- Eric Weisstein's MathWorld, Rényi's Parking Constants
Crossrefs
Cf. A050996.
Programs
-
Mathematica
digits = 102; NIntegrate[(2*x + 1)*Exp[-2*(x + Exp[-x] - 1)]*Exp[-2*(-ExpIntegralEi[-x] + Log[x] + EulerGamma)], {x, 0, Infinity}, WorkingPrecision -> digits + 5] // RealDigits[#, 10, digits] & // First
Formula
Integral_{x>=0} (2*x+1)*exp(-2*(x+exp(-x)-1))*exp(-2*(-Ei(-x)+log(x)+gamma)) dx, where Ei is the exponential integral function and gamma the Euler-Mascheroni constant.