cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242954 a(n) = Product_{i=1..n} A234957(i).

This page as a plain text file.
%I A242954 #11 Dec 24 2016 22:38:02
%S A242954 1,1,1,1,4,4,4,4,16,16,16,16,64,64,64,64,1024,1024,1024,1024,4096,
%T A242954 4096,4096,4096,16384,16384,16384,16384,65536,65536,65536,65536,
%U A242954 1048576,1048576,1048576,1048576,4194304,4194304,4194304,4194304,16777216,16777216,16777216
%N A242954 a(n) = Product_{i=1..n} A234957(i).
%C A242954 This is the generalized factorial for A234957.
%C A242954 a(0) = 1 as it represents the empty product.
%H A242954 Tyler Ball, Tom Edgar, and Daniel Juda, <a href="http://dx.doi.org/10.4169/math.mag.87.2.135">Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem</a>, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
%F A242954 a(n) = Product_{i=1..n} A234957(i).
%F A242954 a(n) = 4^(A054893(n)). - _Vaclav Kotesovec_, May 28 2014
%o A242954 (Sage)
%o A242954 S=[0]+[4^valuation(i,4) for i in [1..100]]
%o A242954 [prod(S[1:i+1]) for i in [0..99]]
%Y A242954 Cf. A054893, A060818, A060828, A234957.
%K A242954 nonn
%O A242954 0,5
%A A242954 _Tom Edgar_, May 27 2014