This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243025 #16 Sep 29 2014 11:12:09 %S A243025 1,4155,4355,1953504,1954329,522169982 %N A243025 Fixed points of the transform n = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + ... + d_(2)*10 + d_(1) -> Sum_{i=1..k-1}{d_(i)^d(i+1)}+d(k)^d(1) (A243023). %C A243025 Subset of A243023. %C A243025 This sequence is finite by using the same argument that Armstrong numbers (A005188) are finite. - _Robert G. Wilson v_, Jun 01 2014 %e A243025 1^1 = 1. %e A243025 5^5 + 5^1 + 1^4 + 4^5 = 4155. %e A243025 5^5 + 5^3 + 3^4 + 4^5 = 4355. %e A243025 4^0 + 0^5 + 5^3 + 3^5 + 5^9 + 9^1 + 1^4 = 1953504. %e A243025 9^2 + 2^3 + 3^4 + 4^5 + 5^9 + 9^1 + 1^9 = 1954329. %p A243025 with(numtheory): P:=proc(q) local a,b,k,ok,n; for n from 10 to q do a:=[]; b:=n; %p A243025 while b>0 do a:=[op(a),b mod 10]; b:=trunc(b/10); od; b:=0; ok:=1; for k from 2 to nops(a) %p A243025 do if a[k-1]=0 and a[k]=0 then ok:=0; break; else b:=b+a[k-1]^a[k]; fi; od; %p A243025 if ok=1 then if n=(b+a[nops(a)]^a[nops(1)]) then print(n); %p A243025 fi; fi; od; end: P(10^10); %t A243025 fQ[n_] := Block[{r = Reverse@ IntegerDigits@ n}, n == Plus @@ (r^RotateLeft@ r)]; k = 1; lst = {}; While[k < 1000000001, If[ fQ@ k, AppendTo[ lst, k]; Print@ k]; k++] (* _Robert G. Wilson v_, Jun 01 2014 *) %Y A243025 Cf. A243023, A243024. %Y A243025 Cf. A005188, A003321. %K A243025 nonn,base,fini,full %O A243025 1,2 %A A243025 _Paolo P. Lava_, May 29 2014 %E A243025 Added a(1) as 1 and a(6) by _Robert G. Wilson v_, Jun 01 2014