cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243059 If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, with p_a <= p_b <= ... <= p_k, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 0 and for k>=1, p_{k} = A000040(k). a(1)=1 by convention.

This page as a plain text file.
%I A243059 #12 Jun 02 2014 22:24:44
%S A243059 1,2,3,0,5,6,7,0,0,15,11,12,13,35,10,0,17,0,19,45,21,77,23,24,0,143,0,
%T A243059 175,29,30,31,0,55,221,14,0,37,323,91,135,41,105,43,539,20,437,47,48,
%U A243059 0,0,187,1573,53,0,33,875,247,667,59,90,61,899,63,0,65,385,67,2873,391,70,71,0
%N A243059 If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, with p_a <= p_b <= ... <= p_k, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 0 and for k>=1, p_{k} = A000040(k). a(1)=1 by convention.
%C A243059 A243058 gives all n such that a(n) = n (the fixed points of this sequence, which include primes).
%C A243059 Differs from A243057 in that the "degenerate cases" A070003 are here zeros, but is otherwise equal to it (at the points given by A102750), i.e. for all n, a(A102750(n)) = A243057(A102750(n)) = A242420(A102750(n)).
%H A243059 Antti Karttunen, <a href="/A243059/b243059.txt">Table of n, a(n) for n = 1..10001</a>
%F A243059 a(1)=1, and for n>1, a(n) = q_{A243056(n)} * a(A032742(n)). Here q_{k} stands for 0 when k=0, and otherwise for the k-th prime, A000040(k).
%F A243059 If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, where p_a <= p_b <= ... <= p_k are (not necessarily distinct) primes (sorted into nondescending order) in the prime factorization of n, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 0 and for k>=1, p_{k} = A000040(k).
%e A243059 For n = 9 = 3*3 = p_2 * p_2, we have a(n) = p_{3-3} * p_3 = 0*3 = 0. [Like all terms in A070003 this is an example of "degenerate case", where some p's in the product get index 0, and thus are set to 0 by the convention used here.]
%e A243059 For n = 10 = 2*5 = p_1 * p_3, we have a(n) = p_{3-1} * p_3 = 3*5 = 15.
%e A243059 For n = 12 = 2*2*3 = p_1 * p_1 * p_2, we have a(n) = p_{2-1} * p{2-1} * p_2 = p_1^2 * p_2 = 12.
%e A243059 For n = 15 = 3*5 = p_2 * p_3, we have a(n) = p_{3-2} * p_3 = 2*5 = 10.
%e A243059 For n = 2200 = 2*2*2*5*5*11 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5, we have a(n) = p_{5-3} * p_{5-3} * p_{5-1} * p_{5-1} * p_{5-1} * p_5 = 3*3*7*7*7*11 = 33957.
%e A243059 For n = 33957 = 3*3*7*7*7*11 = p_2 * p_2 * p_4 * p_4 * p_4 * p_5, we have a(n) = p_{5-4} * p_{5-4} * p_{5-4} * p_{5-2} * p_{5-2} * p_5 = 2*2*2*5*5*11 = 2200.
%o A243059 (Scheme, with _Antti Karttunen_'s IntSeq-library)
%o A243059 (definec (A243059 n) (if (<= n 1) n (* (if (zero? (A243056 n)) 0 (A000040 (A243056 n))) (A243059 (A032742 n)))))
%Y A243059 Fixed points: A243058 (includes primes).
%Y A243059 Positions of zeros: A070003.
%Y A243059 Cf. A243057, A000040, A032742, A243056, A242419, A242420, A243286.
%K A243059 nonn
%O A243059 1,2
%A A243059 _Antti Karttunen_, May 31 2014