This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243093 #19 Jun 05 2021 12:33:20 %S A243093 6,5,6,9,12,25,29,41,61,24,56,25,31,44,21,81,28,49,36,25,87,201,104, %T A243093 336,281,244,44,224,241,276,36,49,64,81,344,100,249,44,69,96,209,436, %U A243093 56,89,369,225,61,400,284,176,84,441,361,76,225,169,76,564,319,84,504,500,504,516,536,564 %N A243093 Least number k > n such that n concatenated with k is a perfect power. %H A243093 Harvey P. Dale, <a href="/A243093/b243093.txt">Table of n, a(n) for n = 1..1000</a> %t A243093 pp[n_]:=Module[{k=n+1},While[GCD@@FactorInteger[n*10^IntegerLength[ k]+ k][[All,2]]<2,k++];k]; Array[pp,70] (* _Harvey P. Dale_, Oct 09 2016 *) %o A243093 (PARI) %o A243093 a(n)=s=Str(n);k=n+1;while(!ispower(eval(concat(s,Str(k)))),k++);return(k) %o A243093 vector(100,n,a(n)) %o A243093 (Python) %o A243093 from sympy import perfect_power %o A243093 def a(n): %o A243093 s, k = str(n), n+1 %o A243093 while not perfect_power(int(s+str(k))): k += 1 %o A243093 return k %o A243093 print([a(n) for n in range(1, 67)]) # _Michael S. Branicky_, Jun 05 2021 %Y A243093 Cf. A245632. %K A243093 nonn,base %O A243093 1,1 %A A243093 _Derek Orr_, Aug 18 2014