This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243099 #28 Feb 11 2024 02:40:47 %S A243099 0,0,0,1,1,3,3,7,6,13,10,21,15,31,21,43,28,57,36,73,45,91,55,111,66, %T A243099 133,78,157,91,183,105,211,120,241,136,273,153,307,171,343,190,381, %U A243099 210,421,231,463,253,507,276,553,300,601 %N A243099 A002061 and A000217 interleaved. %C A243099 a(n) is the number of the distinct symmetric 6-gon in a regular n-gon where vertices of 6-gon are placed on vertices of n-gon. See illustration. %H A243099 Paolo Xausa, <a href="/A243099/b243099.txt">Table of n, a(n) for n = 3..10000</a> %H A243099 Kival Ngaokrajang, <a href="/A243099/a243099.pdf">Illustration of initial terms</a>. %H A243099 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1). %F A243099 a(3) = a(4) = a(5) = 0; for n >= 6, a(n) = (n/2-2)^2-(n/2-2)+1 if even n, a(n) = (n/2-5/2)*(n/2-5/2+1)/2 if odd n. %F A243099 From _Colin Barker_, Aug 19 2014: (Start) %F A243099 a(n) = (71+41*(-1)^n-4*(7+3*(-1)^n)*n+(3+(-1)^n)*n^2)/16 for n>4. %F A243099 a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>10. %F A243099 G.f.: -x^6*(x^4+x+1) / ((x-1)^3*(x+1)^3). (End) %F A243099 Sum_{n>=6} (-1)^(n+1)/a(n) = 2 - tanh(sqrt(3)*Pi/2)*Pi/sqrt(3). - _Amiram Eldar_, Feb 11 2024 %t A243099 With[{r=Range[50]}, Join[{0, 0, 0}, Riffle[r^2-r+1, PolygonalNumber[r]]]] (* or *) %t A243099 LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 0, 0, 1, 1, 3, 3, 7}, 100] (* _Paolo Xausa_, Feb 09 2024 *) %o A243099 (PARI)a(n) = if(n<6,0,if(Mod(n,2)==0,(n/2-2)^2-(n/2-2)+1,(n/2-5/2)*(n/2-5/2+1)/2)) %o A243099 for (n=3,100,print1(a(n),", ")) %o A243099 (PARI) concat([0,0,0], Vec(-x^6*(x^4+x+1)/((x-1)^3*(x+1)^3) + O(x^100))) \\ _Colin Barker_, Aug 19 2014 %Y A243099 Cf. A001399: 3-gon in n-gon, A226088: 4-gon in n-gon, A004526: symmetric 4-gon in n-gon, A008805: symmetric 5-gon in n-gon. %K A243099 nonn,easy %O A243099 3,6 %A A243099 _Kival Ngaokrajang_, Aug 19 2014