cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243113 Minimum of the cube root of the largest element over all partitions of n into at most 5 cubes.

This page as a plain text file.
%I A243113 #29 Feb 17 2017 02:34:05
%S A243113 0,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,2,2,2,2,2,3,3,3,3,2,2,2,
%T A243113 3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,4,3,3,3,3,3,3,3,3,4,3,3,3,3,3,3,3,4,4,
%U A243113 4,3,3,3,3,3,3,4,4,5,3,3,3,3,3,3,4,4,5,4,3,3,3,4,4,4,4,5,4,3,4,4,3,4,4,4,4,5
%N A243113 Minimum of the cube root of the largest element over all partitions of n into at most 5 cubes.
%C A243113 It is known that every number can be written as the sum of at most 5 (positive or negative) cubes.
%C A243113 "Minimum of the cube root of the largest absolute element over all partitions of n into at most 5 cubes" gives a different sequence with differences at n=302, 509, 517, 518, 521, 581, 733, 860, 1076, 1228, 1642, 1733, 1741, 1885, 2012, ... . - _Alois P. Heinz_, Aug 26 2014
%H A243113 Alois P. Heinz, <a href="/A243113/b243113.txt">Table of n, a(n) for n = 0..20000</a>
%e A243113 For n=5, a(n)=1. The partition of 5 into 1^3 + 1^3 + 1^3 + 1^3 + 1^3 has largest summand 1^3, while any other such partition, take 2^3 -1^3 -1^3 -1^3 for example, will have a larger largest part.
%e A243113 a(302) = 7: 7^3 +7^3 +4^3 +4^3 -8^3 = 302.
%p A243113 b:= proc(n, i, t) option remember; n=0 or (0<=i or n<=i^3)
%p A243113       and t>0 and (b(n, i-1, t) or b(n-i^3, i, t-1))
%p A243113     end:
%p A243113 a:= proc(n) local k; for k from 0
%p A243113       do if b(n, k, 5) then return k fi od
%p A243113     end:
%p A243113 seq(a(n), n=0..120);  # _Alois P. Heinz_, Aug 20 2014
%t A243113 b[n_, i_, t_] := b[n, i, t] = n==0 || (0 <= i || n <= i^3) && t>0 && (b[n, i-1, t] || b[n-i^3, i, t-1]); a[n_] := For[k=0, True, k++, If[b[n, k, 5], Return[k]]]; Table[a[n], {n, 0, 120}] (* _Jean-François Alcover_, Feb 17 2017, after _Alois P. Heinz_ *)
%K A243113 nonn
%O A243113 0,7
%A A243113 _David S. Newman_, Aug 20 2014
%E A243113 More terms from _Alois P. Heinz_, Aug 20 2014