cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243140 Numbers n such that n appears in the sequence beginning with the digit-product of n and extended by adding successive digit-products.

Original entry on oeis.org

22, 26, 38, 55, 62, 88, 95, 102, 104, 108, 116, 122, 126, 138, 162, 174, 202, 206, 218, 234, 258, 410, 414, 430, 442, 474, 586, 826, 922, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 3174, 3258, 3498, 4362
Offset: 1

Views

Author

Anthony Sand, May 30 2014

Keywords

Comments

Numbers n>9 with following property: form a sequence b(i) whose initial term is digit-product(n). Later terms are given by the rule that b(i) = b(i-1) + digit-product(b(i-1)) and n itself appears in the sequence.
The function digit-product(n) multiplies all nonzero digits of n (A051801). For example, digit-product(1230) = 1 * 2 * 3 = 6. The resultant sequence appears in A063114, n + product of nonzero digits of n.

Examples

			The digit-product sequence for 22 begins with digit-product(22)= 4, 4 + 4 = 8, 8 + 8 = 16, 16 + 6 = 22. Since this procedure returns to the initial number 22, it belongs here.
The digit-product sequence for 102 begins with 2, 2 + 2 = 4, 4 + 4 = 8, 8 + 8 = 16, 16 + 6 = 22, 22 + 4 = 26, 26 + 12 = 38, 38 + 24 = 62, 62 + 12 = 74, 74 + 28 = 102. Since this procedure returns to the initial number 102, it belongs here.
		

Crossrefs

Programs

  • PARI
    dp(n)=my(v=select(k->k>1,digits(n))); prod(i=1,#v,v[i])
    is(n)=my(t=dp(n)); until(t>=n, t+=dp(t)); t==n \\ Charles R Greathouse IV, Jun 05 2014

Formula

b(i) = b(i-1) + digit-product(b(i-1)).