This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243141 #7 May 31 2014 15:52:04 %S A243141 1,1,1,2,4,3,1,3,10,19,22,7,1,4,22,75,170,204,115,18,1,5,41,218,816, %T A243141 1891,2635,1909,628,58,3,7,72,542,2947,10846,26695,41770,39218,19905, %U A243141 4776,437,13,8,116,1178,8765,46068,171700,444117,776276,876012,601078,229941 %N A243141 Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle of any orientation. Triangle read by rows. %C A243141 The triangle T(n, k) is irregularly shaped: 1 <= k <= A240114(n). First row corresponds to n = 1. %C A243141 The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle is given by A240114(n). %H A243141 Heinrich Ludwig, <a href="/A243141/b243141.txt">Table of n, a(n) for n = 1..129</a> %e A243141 The triangle begins: %e A243141 1; %e A243141 1, 1; %e A243141 2, 4, 3, 1; %e A243141 3, 10, 19, 22, 7, 1; %e A243141 4, 22, 75, 170, 204, 115, 18, 1; %e A243141 5, 41, 218, 816, 1891, 2635, 1909, 628, 58, 3; %e A243141 7, 72, 542, 2947, 10846, 26695, 41770, 39218, 19905, 4776, 437, 13; %e A243141 ... %e A243141 There is exactly T(5, 8) = 1 way to place 8 points (x) on a triangular grid of side 5 according to the definition of the sequence: %e A243141 . %e A243141 x x %e A243141 x . x %e A243141 x . . x %e A243141 x . . . x %Y A243141 Cf. A240114, A240439, A001399 (column 1), A227327 (column 2), A243142 (column 3), A243143 (column 4), A243144 (column 5). %K A243141 nonn,tabf %O A243141 1,4 %A A243141 _Heinrich Ludwig_, May 30 2014