cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243158 Smallest k>=0 such that prime(n)*prime(n+k) + 2 is prime.

This page as a plain text file.
%I A243158 #15 May 08 2021 11:51:16
%S A243158 0,1,1,3,1,5,1,3,4,4,3,5,2,6,13,5,6,1,9,28,8,2,10,8,5,8,3,3,31,2,2,9,
%T A243158 6,1,3,6,2,5,4,1,10,3,7,3,6,7,4,4,1,14,1,1,4,4,18,1,8,1,3,10,3,1,6,1,
%U A243158 7,2,26,19,6,2,8,30,23,6,19,5,1,1,12,1,7
%N A243158 Smallest k>=0 such that prime(n)*prime(n+k) + 2 is prime.
%C A243158 A dual sequence to A243154. The sequence contains a unique zero term. Indeed, every prime p>3 has the form 3*k +/- 1. So, p^2 + 2 == 0 (mod 3).
%t A243158 skp[n_]:=Module[{c=Prime[n],k=0},While[!PrimeQ[c*Prime[n+k]+2],k++];k]; Array[ skp,90,2] (* _Harvey P. Dale_, May 08 2021 *)
%o A243158 (PARI) vector(200, n, k=0; while(!isprime(prime(n+1)*prime(n+1+k)+2), k++); k) \\ _Colin Barker_, May 31 2014
%Y A243158 Cf. A243154.
%K A243158 nonn
%O A243158 2,4
%A A243158 _Vladimir Shevelev_, May 31 2014
%E A243158 More terms from _Colin Barker_, May 31 2014