cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243164 Number of primes p < n such that p*n is a primitive root modulo prime(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 2, 3, 4, 2, 2, 4, 3, 3, 5, 3, 5, 5, 6, 2, 5, 5, 4, 4, 2, 4, 6, 7, 6, 7, 2, 7, 4, 7, 4, 4, 6, 7, 3, 7, 7, 3, 7, 7, 9, 7, 6, 5, 6, 6, 7, 7, 9, 4, 9, 8, 2, 10, 7, 9, 11, 5, 6, 5, 9, 11, 8, 6, 9
Offset: 1

Views

Author

Zhi-Wei Sun, May 31 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 6.
(ii) Any integer n > 6 can be written as k + m with k > 0 and m > 0 such that k*m is a primitive root modulo prime(n).
We have verified part (i) for all n = 7, ..., 2*10^5.

Examples

			a(4) = 1 since 3 is prime with 3*4 = 12 a primitive root modulo prime(4) = 7.
a(9) = 1 since 7 is prime with 7*9 = 63 a primitive root modulo prime(9) = 23.
a(10) = 1 since 5 is prime with 5*10 = 50 a primitive root modulo prime(10) = 29.
a(12) = 1 since 2 is prime with 2*12 = 24 a primitive root modulo prime(12) = 37.
		

Crossrefs

Programs

  • Mathematica
    dv[n_]:=Divisors[n]
    Do[m=0;Do[Do[If[Mod[(Prime[k]*n)^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,1,PrimePi[n-1]}];Print[n," ",m];Continue,{n,1,80}]