This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243175 #17 Mar 14 2021 04:22:02 %S A243175 0,1,4,7,9,13,16,19,25,27,28,31,36,37,43,49,52,61,63,64,67,73,76,79, %T A243175 81,91,97,100,103,108,109,112,117,121,124,127,133,139,144,148,151,157, %U A243175 163,169,171,172,175,181,189,193,196,199,208,211,217,223,225,229,241,243,244,247,252,256,259,268,271,277,279,283,289,292,301,304,307,313,316,324,325 %N A243175 Numbers of the form x^2 + xy + 7y^2. %C A243175 Discriminant -27. %C A243175 From _Jianing Song_, Mar 13 2021: (Start) %C A243175 Numbers in A003136 that are not congruent to 3 modulo 9. %C A243175 Closed under multiplication. %C A243175 For k > 0, k is a term if and only if: write k = 3^a * Product_{i=1..r} (p_i)^(a_i) * Product_{i=1..s} (q_i)^(b_i), p_i == 1 (mod 3), q_i == 2 (mod 3) are primes, then a != 1 and each b_i is even. (End) %H A243175 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A243175 Select[Range[0, 350], Resolve@Exists[{x, y}, Reduce[# == (x^2 + x y + 7 y^2), {x, y}, Integers]] &] (* _Vincenzo Librandi_, Feb 11 2020 *) %Y A243175 Primes: A002476. %Y A243175 Cf. A003136. %K A243175 nonn %O A243175 1,3 %A A243175 _N. J. A. Sloane_, Jun 02 2014