A141189 Primes of the form x^2+7*x*y-y^2 (as well as of the form 7*x^2+9*x*y+y^2).
7, 11, 13, 17, 29, 37, 43, 47, 53, 59, 89, 97, 107, 113, 131, 149, 163, 197, 199, 211, 223, 227, 229, 241, 269, 271, 281, 293, 307, 311, 317, 331, 347, 367, 409, 431, 433, 439, 449, 461, 467, 487, 521, 523, 541, 547, 577, 587, 593, 599, 607, 619, 643, 647, 653
Offset: 1
Keywords
Examples
a(5) = 29 because we can write 29 = 3^2+7*3*1-1^2 (or 29 = 7*1^2+9*1*2+2^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Programs
-
Mathematica
Reap[For[p = 2, p < 1000, p = NextPrime[p], If[FindInstance[p == x^2 + 7*x*y - y^2, {x, y}, Integers, 1] =!= {}, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 25 2016 *)
Comments