A243225 Numbers which are not the sum of positive integers in an arithmetic progression with common difference 3.
1, 2, 3, 4, 6, 8, 10, 14, 16, 20, 28, 32, 44, 52, 56, 64, 68, 76, 88, 104, 128, 136, 152, 184, 208, 232, 248, 256, 272, 296, 304, 328, 344, 368, 464, 496, 512, 592, 656, 688, 736, 752, 848, 928, 944, 976, 992, 1024, 1072, 1136, 1168, 1184, 1264, 1312, 1328, 1376, 1424, 1504, 1696, 1888
Offset: 1
Examples
5 is not in the sequence because 5 = 1+4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 121 terms from Jean-Christophe Hervé)
- J. W. Andrushkiw, R. I. Andrushkiw and C. E. Corzatt, Representations of Positive Integers as Sums of Arithmetic Progressions, Mathematics Magazine, Vol. 49, No. 5 (Nov., 1976), pp. 245-248.
- Francisco Javier de Vega, Some Variants of Integer Multiplication, Axioms (2023) Vol. 12, 905. See p. 8.
- M. A. Nyblom and C. Evans, On the enumeration of partitions with summands in arithmetic progression, Australian Journal of Combinatorics, Vol. 28 (2003), pp. 149-159.
Crossrefs
Cf. A243223.
Formula
A243223(a(n)) = 0.
Comments