cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243266 Decimal expansion of a parking constant related to the asymptotic expected number of cars, assuming random car lengths.

This page as a plain text file.
%I A243266 #10 Feb 16 2025 08:33:22
%S A243266 9,8,4,8,7,1,2,8,2,5,2,5,9,9,5,3,0,4,4,7,2,7,9,5,2,2,1,5,0,7,0,5,9,5,
%T A243266 3,2,3,1,2,7,6,0,9,1,7,0,4,1,0,3,7,4,9,5,8,1,3,6,5,2,3,2,5,5,2,0,6,5,
%U A243266 3,7,9,3,8,8,4,0,7,3,1,6,0,6,4,3,1,8,7,0,0,9,7,4,9,4,6,3,0,0,6,7
%N A243266 Decimal expansion of a parking constant related to the asymptotic expected number of cars, assuming random car lengths.
%D A243266 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Renyi's parking constant, p. 279.
%H A243266 G. C. Greubel, <a href="/A243266/b243266.txt">Table of n, a(n) for n = 0..5000</a>
%H A243266 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/RenyisParkingConstants.html">Rényi's Parking Constants</a>
%F A243266 (1-1/2^((sqrt(17)-1)/4))*sqrt(Pi)*GAMMA(sqrt(17)/2)/(GAMMA((sqrt(17)+1)/4)*GAMMA((sqrt(17)+3)/4)^2), where GAMMA is the Euler Gamma function.
%e A243266 0.9848712825259953044727952215...
%t A243266 (1-1/2^((Sqrt[17]-1)/4))*Sqrt[Pi]*Gamma[Sqrt[17]/2]/(Gamma[(Sqrt[17]+1)/4]*Gamma[(Sqrt[17]+3)/4]^2) // RealDigits[#, 10, 100]& // First
%o A243266 (PARI) (1-1/2^((sqrt(17)-1)/4))*sqrt(Pi)*gamma(sqrt(17)/2)/(gamma((sqrt(17)+1)/4)*gamma((sqrt(17)+3)/4)^2) \\ _G. C. Greubel_, Feb 14 2017
%Y A243266 Cf. A050996.
%K A243266 nonn,cons
%O A243266 0,1
%A A243266 _Jean-François Alcover_, Jun 02 2014