This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243304 #49 Apr 21 2024 23:54:42 %S A243304 1,5,13,50,213,536,536,536,9354,63202,117150,1314904,2572181,2572181 %N A243304 Least number k > 0 such that 3^k contains at least an n-digit long substring of the infinite string "98765432109876543210987654...". %C A243304 a(n+1) >= a(n) for all n. %C A243304 Note that this sequence is "..at least an n-digit long substring...", not "..exactly an n-digit long substring...". Thus a(6) = a(7) = a(8) = 536. However, if it were "..exactly an n-digit long substring...", a(6) would be 810 and a(7) would be 1772. - _Derek Orr_, Sep 26 2014 %C A243304 a(15) > 10^7. If the definition were "exactly an n-digit long" then a(13) would be 4019359. - _Delbert L. Johnson_, Apr 13 2024 %e A243304 3^5 = 243 contains a 2-digit substring of the infinite string "98765432109876543210987654..." (in this case, "43"). So a(2) = 5. %o A243304 (Python) %o A243304 def Rev(n): %o A243304 rev = '' %o A243304 for i in str(n): %o A243304 rev = i + rev %o A243304 return rev %o A243304 def a(n): %o A243304 lst = [] %o A243304 for b in range(1,10**n): %o A243304 if len(str(3**b)) >= n: %o A243304 lst.append(b) %o A243304 break %o A243304 for k in range(lst[0],50000): %o A243304 for i in range(10): %o A243304 s = '' %o A243304 s += str(i) %o A243304 for j in range(i+1,i+n): %o A243304 dig = j%10 %o A243304 s+=str(dig) %o A243304 if str(3**k).find(Rev(s)) > -1: %o A243304 return k %o A243304 n = 1 %o A243304 while n < 100: %o A243304 print(a(n),end=', ') %o A243304 n += 1 %Y A243304 Cf. A243295. %K A243304 nonn,base,more,hard,less %O A243304 1,2 %A A243304 _Derek Orr_, Jun 04 2014 %E A243304 a(10)-a(12) from _Hiroaki Yamanouchi_, Sep 26 2014 %E A243304 a(13)-a(14) from _Delbert L. Johnson_, Apr 13 2024