cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243309 Decimal expansion of DeVicci's tesseract constant.

This page as a plain text file.
%I A243309 #17 Feb 16 2025 08:33:22
%S A243309 1,0,0,7,4,3,4,7,5,6,8,8,4,2,7,9,3,7,6,0,9,8,2,5,3,5,9,5,2,3,1,0,9,9,
%T A243309 1,4,1,9,2,5,6,9,0,1,1,4,1,1,3,6,6,9,7,7,0,2,3,4,9,6,3,7,9,8,5,7,1,1,
%U A243309 5,2,3,1,3,2,8,0,2,8,6,7,7,7,9,6,2,5,2,0,5,5,1,4,7,4,6,3,5,9,2,3,9,4,2
%N A243309 Decimal expansion of DeVicci's tesseract constant.
%C A243309 This "tesseract" constant is the edge length of the largest 3-dimensional cube that can be inscribed within a unit 4-dimensional cube.
%C A243309 From _Amiram Eldar_, May 29 2021: (Start)
%C A243309 Named by Finch (2003) after Kay R. Pechenick DeVicci Shultz.
%C A243309 The problem was apparently first posed by Gardner (1966). According to Gardner (2001), he had received the correct answers to the problem from Eugen I. Bosch (1966), G. de Josselin de Jong (1971), Hermann Baer (1974) and Kay R. Pechenick (1983). (End)
%D A243309 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.14 DeVicci's tesseract constant, p. 524.
%D A243309 Martin Gardner, Is It Possible to Visualize a Four-Dimensional Figure?, Mathematical Games, Sci. Amer., Vol. 215, No. 5, (Nov. 1966), pp. 138-143.
%D A243309 Martin Gardner, Mathematical Carnival: A New Round-Up of Tantalizers and Puzzles from Scientific American, New York: Vintage Books, 1977, Chapter 4, "Hypercubes", pp. 41-54.
%D A243309 Martin Gardner, The Colossal Book of Mathematics, New York, London: W. W. Norton & Co., 2001, Chapter 13, "Hypercubes", pp. 162-174.
%H A243309 Hallard T. Croft, Kenneth Falconer and Richard K. Guy, <a href="https://doi.org/10.1007/978-1-4612-0963-8">Unsolved Problems in Geometry</a>, Springer-Verlag New York, 1991, Section B4, p. 53.
%H A243309 Richard K. Guy and Richard J. Nowakowski, <a href="https://www.jstor.org/stable/2974481">Monthly Unsolved Problems, 1969-1997</a>, The American Mathematical Monthly, Vol. 104, No. 10 (1997), pp. 967-973.
%H A243309 Greg Huber, Kay Pechenick Shultz and John E. Wetzel, <a href="https://doi.org/10.1080/00029890.2018.1448197">The n-cube is Rupert</a>, The American Mathematical Monthly, Vol. 125, No. 6 (2018), pp. 505-512.
%H A243309 Kay R. Pechenick DeVicci Shultz, <a href="https://www.kitp.ucsb.edu/sites/default/files/preprints/2013/13-142.pdf">Largest m-Cube in an n-Cube: Partial Solution</a>, Notes written in 1996 and assembled in 2013 with a preface by Greg Huber, KITP preprint NSF-ITP-13-142.
%H A243309 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrinceRupertsCube.html">Prince Rupert's Cube</a>.
%H A243309 Wikipedia, <a href="https://en.wikipedia.org/wiki/Prince_Rupert%27s_cube">Prince Rupert's cube</a>.
%H A243309 <a href="/index/Al#algebraic_08">Index entries for algebraic numbers, degree 8</a>
%F A243309 Positive root of the polynomial 4*x^8 - 28*x^6 - 7*x^4 + 16*x^2 + 16.
%e A243309 1.00743475688427937609825359523109914192569...
%t A243309 Root[4*x^8 - 28*x^6 - 7*x^4 + 16*x^2 + 16, x, 3] // RealDigits[#, 10, 103]& // First
%o A243309 (PARI) polrootsreal(4*x^8-28*x^6-7*x^4+16*x^2+16)[3] \\ _Charles R Greathouse IV_, Apr 07 2016
%o A243309 (PARI) sqrt(polrootsreal(Pol([4,-28,-7,16,16]))[1]) \\ _Charles R Greathouse IV_, Apr 07 2016
%Y A243309 Cf. A093577.
%K A243309 nonn,cons,easy
%O A243309 1,4
%A A243309 _Jean-François Alcover_, Jun 03 2014