cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243353 Permutation of natural numbers which maps between the partitions as encoded in A227739 (binary based system, zero-based) to A112798 (prime-index based system, one-based).

This page as a plain text file.
%I A243353 #21 May 09 2017 22:40:40
%S A243353 1,2,4,3,9,8,6,5,25,18,16,27,15,12,10,7,49,50,36,75,81,32,54,125,35,
%T A243353 30,24,45,21,20,14,11,121,98,100,147,225,72,150,245,625,162,64,243,
%U A243353 375,108,250,343,77,70,60,105,135,48,90,175,55,42,40,63,33,28,22,13,169,242,196,363,441,200,294,605,1225,450,144
%N A243353 Permutation of natural numbers which maps between the partitions as encoded in A227739 (binary based system, zero-based) to A112798 (prime-index based system, one-based).
%C A243353 Note the indexing: the domain includes zero, but the range starts from one.
%H A243353 Antti Karttunen, <a href="/A243353/b243353.txt">Table of n, a(n) for n = 0..8192</a>
%H A243353 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A243353 a(n) = A005940(1+A003188(n)).
%F A243353 a(n) = A241909(1+A075157(n)). [With A075157's original starting offset]
%F A243353 For all n >= 0, A243354(a(n)) = n.
%F A243353 A227183(n) = A056239(a(n)). [Maps between the corresponding sums ...]
%F A243353 A227184(n) = A003963(a(n)). [... and products of parts of each partition].
%F A243353 For n >= 0, a(A037481(n)) = A002110(n). [Also "triangular partitions", the fixed points of Bulgarian solitaire, A226062 & A242424].
%F A243353 For n >= 1, a(A227451(n+1)) = 4*A243054(n).
%t A243353 f[n_, i_, x_] := Which[n == 0, x, EvenQ@ n, f[n/2, i + 1, x], True, f[(n - 1)/2, i, x Prime@ i]]; Table[f[BitXor[n, Floor[n/2]], 1, 1], {n, 0, 74}] (* _Michael De Vlieger_, May 09 2017 *)
%o A243353 (Scheme) (define (A243353 n) (A005940 (+ 1 (A003188 n))))
%o A243353 (Python)
%o A243353 from sympy import prime
%o A243353 import math
%o A243353 def A(n): return n - 2**int(math.floor(math.log(n, 2)))
%o A243353 def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
%o A243353 def a005940(n): return b(n - 1)
%o A243353 def a003188(n): return n^int(n/2)
%o A243353 def a243353(n): return a005940(1 + a003188(n)) # _Indranil Ghosh_, May 07 2017
%Y A243353 A243354 gives the inverse mapping.
%Y A243353 Cf. A227739, A112798, A075157, A241909, A005940, A003188, A226062, A242424.
%K A243353 nonn
%O A243353 0,2
%A A243353 _Antti Karttunen_, Jun 05 2014