cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243363 Numbers with divisors containing all the digits 0-9 and each digit appears exactly once (in base 10).

This page as a plain text file.
%I A243363 #21 Apr 25 2025 15:03:15
%S A243363 203457869,203465789,203465897,203468579,203475869,203478659,
%T A243363 203485697,203485769,203495867,203548967,203564897,203568947,
%U A243363 203574689,203584679,203584769,203594687,203596847,203598467,203645879,203645987,203648957,203654987,203659487,203674589
%N A243363 Numbers with divisors containing all the digits 0-9 and each digit appears exactly once (in base 10).
%C A243363 Primes made up of distinct digits except 1.
%C A243363 There are no composite numbers with divisors containing all the digits 0-9 and each digit appears exactly once.
%C A243363 Subsequence of A029743 (primes with distinct digits).
%C A243363 Numbers n such that A243360(n) = 9876543210.
%C A243363 Sequence contains 19558 terms, the last term is a(19558) = 987625403.
%H A243363 Michael S. Branicky, <a href="/A243363/b243363.txt">Table of n, a(n) for n = 1..19558</a> (full sequence)
%t A243363 Select[Range[203*10^6,204*10^6],Sort[Flatten[IntegerDigits/@ Divisors[#]]] == Range[0,9]&] (* _Harvey P. Dale_, Aug 22 2016 *)
%o A243363 (Magma) [n: n in [1..203457879] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 9876543210];
%o A243363 (Python) # generates entire sequence
%o A243363 from sympy import isprime
%o A243363 from itertools import permutations as perms
%o A243363 dist = (int("".join(p)) for p in perms("023456789", 9) if p[0] != "0")
%o A243363 afull = [k for k in dist if isprime(k)]
%o A243363 print(afull[:24]) # _Michael S. Branicky_, Aug 04 2022
%Y A243363 Cf. A037278, A176558, A243360, A243361, A243362, A243364.
%K A243363 nonn,base,fini,full
%O A243363 1,1
%A A243363 _Jaroslav Krizek_, Jun 04 2014