A243374 Least number k such that n//k and k//n are both prime where // is the concatenation function, or 0 if no such k exists.
1, 0, 1, 0, 0, 0, 1, 0, 7, 0, 3, 0, 1, 0, 0, 0, 3, 0, 7, 0, 13, 0, 11, 0, 0, 0, 1, 0, 27, 0, 1, 0, 7, 0, 0, 0, 3, 0, 7, 0, 9, 0, 39, 0, 0, 0, 9, 0, 1, 0, 19, 0, 51, 0, 0, 0, 1, 0, 3, 0, 7, 0, 1, 0, 0, 0, 3, 0, 49, 0, 9, 0, 3, 0, 0, 0, 17, 0, 19, 0, 1, 0, 9, 0, 0, 0, 7, 0, 23
Offset: 1
Examples
91 and 19 are not both prime, 92 and 29 are not both prime, 93 and 39 are not both prime, 94 and 49 are not both prime, 95 and 59 are not both prime, 96 and 69 are not both prime, but 97 and 79 are both prime. Thus a(9) = 7.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..1000 (first 88 terms from Derek Orr)
Crossrefs
Cf. A068673.
Programs
-
PARI
a(n)=for(k=1,10^4,if(ispseudoprime(eval(concat(Str(n),Str(k)))) && ispseudoprime(eval(concat(Str(k),Str(n)))),return(k))) n=1;while(n<100,print1(a(n),", ");n++)
-
Python
import sympy from sympy import isprime def a(n): for k in range(1,10**5): if isprime(int(str(k)+str(n))) and isprime(int(str(n)+str(k))): return k n = 1 while n < 100: print(a(n),end=', ') n += 1
Extensions
Inserted a(38)=0 by Paolo P. Lava, Jun 16 2014
Comments