cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243376 Decimal expansion of 2*K/Pi, a constant related to the asymptotic evaluation of the number of positive integers all of whose prime factors are congruent to 3 modulo 4, where K is the Landau-Ramanujan constant.

Original entry on oeis.org

4, 8, 6, 5, 1, 9, 8, 8, 8, 3, 8, 5, 8, 9, 0, 9, 9, 7, 1, 2, 7, 2, 4, 5, 6, 4, 0, 5, 8, 6, 8, 2, 3, 4, 0, 5, 5, 3, 8, 1, 7, 1, 9, 8, 1, 7, 3, 9, 5, 4, 1, 2, 1, 3, 6, 8, 8, 1, 5, 4, 5, 1, 0, 8, 1, 6, 2, 9, 8, 5, 5, 0, 9, 3, 2, 0, 7, 5, 8, 1, 7, 1, 4, 7, 6, 0, 2, 0, 2, 1, 0, 3, 8, 1, 0, 6, 9, 3, 7, 1, 2
Offset: 0

Views

Author

Jean-François Alcover, Jun 04 2014

Keywords

Examples

			0.4865198883858909971272456405868234...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 100.

Crossrefs

Cf. A064533.

Programs

  • Mathematica
    digits = 101; LandauRamanujanK =  1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 2*LandauRamanujanK/Pi // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *)

Formula

2*K/Pi, where K is the Landau-Ramanujan constant (A064533).