This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243378 #25 Feb 16 2025 08:33:22 %S A243378 9,8,5,2,4,7,5,8,1,0,0,6,0,9,6,3,4,3,6,9,0,5,1,0,6,0,4,2,9,8,8,9,6,8, %T A243378 0,1,0,8,1,2,1,6,4,7,9,1,4,4,4,0,2,8,2,4,7,1,7,2,1,1,8,8,9,5,6,5,1,3, %U A243378 3,9,1,6,2,8,8,5,1,9,2,1,9,1,2,2,7,6,2,8,5,2,2,3,3,8,4,5,3,4,4,8,9,9 %N A243378 Decimal expansion of a constant related to the asymptotic evaluation of Product_{p prime congruent to 3 modulo 4} (1 + 1/p). %D A243378 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101. %H A243378 G. C. Greubel, <a href="/A243378/b243378.txt">Table of n, a(n) for n = 0..5000</a> %H A243378 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Landau-RamanujanConstant.html">Ramanujan constant</a>. %F A243378 Equals (1/sqrt(Pi))*exp(gamma/2)*1/K, where gamma is the Euler-Mascheroni constant (A001620) and K the Landau-Ramanujan constant (A064533). %F A243378 Equals 4/(Pi*A088540) = A088538/A088540. - _Amiram Eldar_, Nov 16 2021 %e A243378 0.985247581006096343690510604298896801... %t A243378 digits = 102; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 1/Sqrt[Pi]*Exp[EulerGamma/2]*1/LandauRamanujanK // RealDigits[#, 10, digits] & // First (* updated Mar 14 2018 *) %Y A243378 Cf. A001620, A064533, A088538, A088540. %K A243378 nonn,cons %O A243378 0,1 %A A243378 _Jean-François Alcover_, Jun 04 2014