A243379 Decimal expansion of 1/(2*K^2) = Product_(p prime congruent to 3 modulo 4) (1 - 1/p^2), where K is the Landau-Ramanujan constant.
8, 5, 6, 1, 0, 8, 9, 8, 1, 7, 2, 1, 8, 9, 3, 4, 7, 6, 9, 0, 6, 0, 3, 3, 0, 0, 6, 1, 4, 8, 0, 6, 1, 1, 7, 3, 4, 8, 1, 0, 7, 8, 4, 2, 7, 3, 8, 8, 1, 7, 3, 4, 9, 0, 8, 6, 0, 5, 1, 8, 4, 0, 0, 5, 8, 3, 4, 3, 0, 7, 9, 6, 1, 1, 1, 8, 6, 3, 6, 5, 8, 9, 6, 2, 3, 3, 8, 1, 2, 9, 4, 5, 1, 7, 7, 7, 7, 0, 9, 7, 6
Offset: 0
Examples
0.856108981721893476906033006148061173481...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.
Links
- Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
- Eric Weisstein's MathWorld, Ramanujan constant
Programs
-
Mathematica
digits = 101; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 1/(2*LandauRamanujanK^2) // RealDigits[#, 10, digits] & // First (* updated Mar 18 2018 *)
Formula
1/(2*K^2), where K is the Landau-Ramanujan constant (A064533).
Comments