cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243379 Decimal expansion of 1/(2*K^2) = Product_(p prime congruent to 3 modulo 4) (1 - 1/p^2), where K is the Landau-Ramanujan constant.

Original entry on oeis.org

8, 5, 6, 1, 0, 8, 9, 8, 1, 7, 2, 1, 8, 9, 3, 4, 7, 6, 9, 0, 6, 0, 3, 3, 0, 0, 6, 1, 4, 8, 0, 6, 1, 1, 7, 3, 4, 8, 1, 0, 7, 8, 4, 2, 7, 3, 8, 8, 1, 7, 3, 4, 9, 0, 8, 6, 0, 5, 1, 8, 4, 0, 0, 5, 8, 3, 4, 3, 0, 7, 9, 6, 1, 1, 1, 8, 6, 3, 6, 5, 8, 9, 6, 2, 3, 3, 8, 1, 2, 9, 4, 5, 1, 7, 7, 7, 7, 0, 9, 7, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 04 2014

Keywords

Comments

Equals 1/1.168075586.., where 1.168.. is zeta_(m=4,n=3)(s=2) in the table of Section 3.3 of arxiv:1008.2547. - R. J. Mathar, Nov 14 2014

Examples

			0.856108981721893476906033006148061173481...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constant, p. 101.

Crossrefs

Programs

  • Mathematica
    digits = 101; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 1/(2*LandauRamanujanK^2) // RealDigits[#, 10, digits] & // First (* updated Mar 18 2018 *)

Formula

1/(2*K^2), where K is the Landau-Ramanujan constant (A064533).
A088539 * A243379 = 8 / Pi^2. - Vaclav Kotesovec, Apr 30 2020