This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243411 #13 May 22 2025 10:21:38 %S A243411 2,2,10193,24851,20549,719,22133,230471,46679,432449,114689,227603, %T A243411 305297,61463,1866467,866309,1189403,362081,2615783,493433,966353, %U A243411 4154363,6562931,9096203,3701627,3128813,20983727,303593,24437537,1068491 %N A243411 Least prime p such that p*10^n-1, p*10^n-3, p*10^n-7 and p*10^n-9 are all prime. %t A243411 lpp[n_]:=Module[{p=2,c=10^n},While[!AllTrue[p*c-{1,3,7,9}, PrimeQ], p= NextPrime[ p]];p]; Array[lpp,30] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jun 12 2016 *) %o A243411 (Python) %o A243411 import sympy %o A243411 from sympy import isprime %o A243411 from sympy import prime %o A243411 def a(n): %o A243411 for k in range(1,10**8): %o A243411 if isprime(prime(k)*10**n-1) and isprime(prime(k)*10**n-3) and isprime(prime(k)*10**n-7) and isprime(prime(k)*10**n-9): %o A243411 return prime(k) %o A243411 n = 1 %o A243411 while n < 100: %o A243411 print(a(n),end=', ') %o A243411 n+=1 %o A243411 (PARI) a(n)=for(k=1,10^8,if(ispseudoprime(prime(k)*10^n-1) && ispseudoprime(prime(k)*10^n-3) && ispseudoprime(prime(k)*10^n-7) && ispseudoprime(prime(k)*10^n-9), return(prime(k)))) %o A243411 n=1;while(n<100,print1(a(n),", ");n++) %Y A243411 Cf. A242564, A064432. %K A243411 nonn %O A243411 1,1 %A A243411 _Derek Orr_, Jun 04 2014