This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A243472 #15 Jan 21 2015 18:41:10 %S A243472 2,31,101,151,181,199,229,277,307,317,379,439,479,491,647,691,797,911, %T A243472 997,1039,1051,1181,1291,1367,1381,1471,1511,1549,1657,1709,1847,1867, %U A243472 1987,2081,2099,2111,2207,2467,2621,2707,3041,3221,3259,3541,3571,3581,3769 %N A243472 Primes p such that p^6 - p^5 - 1 is prime. %H A243472 K. D. Bajpai, <a href="/A243472/b243472.txt">Table of n, a(n) for n = 1..4699</a> %e A243472 31 appears in the sequence because it is prime and 31^6 - 31^5 - 1 = 858874529 is also prime. %e A243472 101 appears in the sequence because it is prime and 101^6 - 101^5 - 1 = 1051010050099 is also prime. %p A243472 A243472 := proc() local a, b; a:=ithprime(n); b:= a^6-a^5-1; if isprime (b) then RETURN (a); fi; end: seq(A243472 (), n=1..2000); %t A243472 c = 0; Do[k=Prime[n]; If[PrimeQ[k^6-k^5-1], c++; Print[c," ",k]], {n,1,200000}]; %t A243472 Select[Prime[Range[600]],PrimeQ[#^6-#^5-1]&] (* _Harvey P. Dale_, Jan 21 2015 *) %o A243472 (PARI) s=[]; forprime(p=2, 4000, if(isprime(p^6-p^5-1), s=concat(s, p))); s \\ _Colin Barker_, Jun 06 2014 %Y A243472 Cf. A000040, A091567, A053182, A053183, A053184, A238136. %K A243472 nonn %O A243472 1,1 %A A243472 _K. D. Bajpai_, Jun 05 2014