cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243485 Sum of all the products formed by multiplying the corresponding smaller and larger parts of the Goldbach partitions of n.

This page as a plain text file.
%I A243485 #38 Feb 16 2025 08:33:22
%S A243485 0,0,0,4,6,9,10,15,14,46,0,35,22,82,26,94,0,142,34,142,38,263,0,357,
%T A243485 46,371,0,302,0,591,58,334,62,780,0,980,0,578,74,821,0,1340,82,785,86,
%U A243485 1356,0,1987,94,1512,0,1353,0,2677,106,1421,0,2320,0,4242,118
%N A243485 Sum of all the products formed by multiplying the corresponding smaller and larger parts of the Goldbach partitions of n.
%C A243485 a(n) is even for odd n.
%C A243485 If Goldbach's conjecture is true, a(n) > 0 for all even n > 2.
%C A243485 Sum of the areas of the distinct rectangles with prime length and width such that L + W = n, W <= L. For example, a(16) = 94; the two rectangles are 3 X 13 and 5 X 11, and the sum of their areas is 3*13 + 5*11 = 94. - _Wesley Ivan Hurt_, Oct 28 2017
%H A243485 Vincenzo Librandi, <a href="/A243485/b243485.txt">Table of n, a(n) for n = 1..1000</a>
%H A243485 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GoldbachPartition.html">Goldbach Partition</a>
%H A243485 Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a>
%H A243485 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%H A243485 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A243485 a(n) = Sum_{i=2..n/2} i*(n-i) * A064911(i*(n-i)).
%F A243485 a(n) = Sum_{i=1..floor(n/2)} i * (n-i) * A010051(i) * A010051(n-i). - _Wesley Ivan Hurt_, Oct 29 2017
%p A243485 with(numtheory): A243485:=n->add(i*(n-i)*(pi(i)-pi(i-1))*(pi(n-i)-pi(n-i-1)), i=1..floor(n/2)): seq(A243485(n), n=1..100); # _Wesley Ivan Hurt_, Oct 29 2017
%t A243485 Table[Sum[i*(n - i)*Floor[2/PrimeOmega[i (n - i)]], {i, 2, n/2}], {n,
%t A243485   50}]
%Y A243485 Cf. A002372, A002375, A045917, A064911, A117929.
%K A243485 nonn,easy
%O A243485 1,4
%A A243485 _Wesley Ivan Hurt_, Jun 05 2014