cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243499 Product of parts of integer partitions as enumerated in the table A125106.

This page as a plain text file.
%I A243499 #36 Apr 21 2024 22:23:32
%S A243499 1,1,2,1,3,2,4,1,4,3,6,2,9,4,8,1,5,4,8,3,12,6,12,2,16,9,18,4,27,8,16,
%T A243499 1,6,5,10,4,15,8,16,3,20,12,24,6,36,12,24,2,25,16,32,9,48,18,36,4,64,
%U A243499 27,54,8,81,16,32,1,7,6,12,5,18,10,20,4,24,15,30,8,45,16,32,3
%N A243499 Product of parts of integer partitions as enumerated in the table A125106.
%C A243499 This sequence and A341392 have the same set of values on intervals from 2^m to 2^(m+1) - 1 for m >= 0. - _Mikhail Kurkov_, Jun 18 2021 [verification needed]
%H A243499 Antti Karttunen, <a href="/A243499/b243499.txt">Table of n, a(n) for n = 0..8191</a>
%F A243499 Can also be obtained by mapping with an appropriate permutation from the products of parts of each partition computed for other enumerations similar to A125106:
%F A243499 a(n) = A227184(A006068(n)).
%F A243499 a(n) = A003963(A005940(n+1)).
%F A243499 a(n) = A243504(A163511(n)).
%F A243499 From _Mikhail Kurkov_, Jul 11 2021: (Start)
%F A243499 a(n) = (1 + A023416(n))*a(A053645(n)) for n > 0 with a(0) = 1.
%F A243499 a(2n+1) = a(n) for n >= 0.
%F A243499 a(2n) = A341392(2*A059894(n)) = a(n - 2^f(n)) + a(2n - 2^f(n)) = (2 + f(n))*a(n - 2^f(n)) for n > 0 with a(0)=1 where f(n) = A007814(n).
%F A243499 Sum_{k=0..2^n - 1} a(k) = A000110(n+1) for n >= 0.
%F A243499 a((4^n - 1)/3) = n! for n >= 0.
%F A243499 a(2^m*(2^n - 1)) = (m+1)^n for n >= 0, m >= 0. (End) [verification needed]
%o A243499 (Scheme)
%o A243499 (define (A243499 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) p) ((even? n) (loop (/ n 2) (+ i 1) p)) (else (loop (/ (- n 1) 2) i (* p i))))))
%Y A243499 Cf. A125106, A161511 (gives the corresponding sums), A227184, A003963, A243504, A006068, A005940, A163511, A000110, A007814, A023416, A053645, A329369 (similar recurrence), A341392.
%K A243499 nonn,look
%O A243499 0,3
%A A243499 _Antti Karttunen_, Jun 28 2014