cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243510 Number of ways the maximal number of domicules can be placed on an n X n square.

This page as a plain text file.
%I A243510 #21 Feb 16 2025 08:33:22
%S A243510 1,1,3,58,280,170985,3037561,35203565096,3263262629905,
%T A243510 580992839261272720,326207195516663381931,811740344447523575023878026,
%U A243510 3011882198082438957330143630563,98662906581850761030365769529236858241,2565014347691062208319404612723752103028288
%N A243510 Number of ways the maximal number of domicules can be placed on an n X n square.
%C A243510 Number of maximum matchings in the n X n king graph. - _Eric W. Weisstein_, Jun 20 2017
%H A243510 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependentEdgeSet.html">Independent Edge Set</a>
%H A243510 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a>
%H A243510 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Matching.html">Matching</a>
%H A243510 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximumIndependentEdgeSet.html">Maximum Independent Edge Set</a>
%H A243510 Wikipedia, <a href="https://en.wikipedia.org/wiki/King%27s_graph">King's graph</a>
%F A243510 a(n) = A243424(n,floor(n^2/2)).
%e A243510 a(2) = 3:
%e A243510   +---+  +---+  +---+
%e A243510   |o-o|  |o o|  |o o|
%e A243510   |   |  || ||  | X |
%e A243510   |o-o|  |o o|  |o o|
%e A243510   +---+  +---+  +---+.
%e A243510 a(3) = 58:
%e A243510   +-----+  +-----+  +-----+
%e A243510   |o-o o|  |o o o|  |o o-o|
%e A243510   |    ||  | X  ||  | \   |
%e A243510   |o   o|  |o o o|  |o o o|
%e A243510   ||    |  |     |  ||  / |
%e A243510   |o o-o|  |o-o  |  |o o  |
%e A243510   +-----+  +-----+  +-----+  ... .
%Y A243510 Cf. A243511.
%Y A243510 Even bisection gives A239273.
%K A243510 nonn
%O A243510 0,3
%A A243510 _Alois P. Heinz_, Jun 05 2014