A243517 Number of length n+2 0..8 arrays with no three elements in a row with pattern aba or abb (with a!=b) and new values 0..8 introduced in 0..8 order.
3, 5, 10, 25, 77, 280, 1157, 5296, 26406, 141585, 807064, 4837587, 30181075, 194210670, 1279159631, 8571132698, 58153599684, 398124806735, 2743173705258, 18987825983429, 131858977691833, 917797527716980, 6398758306106345
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....1....1....1....1....0....0....0....1....1....1....0....1....1....1 ..2....2....2....2....2....2....1....0....0....2....2....2....0....2....2....2 ..3....3....3....3....3....3....2....0....0....0....3....3....1....0....3....3 ..4....1....0....0....0....0....3....0....0....3....4....1....2....3....1....4 ..5....0....1....4....2....2....0....1....0....4....1....0....3....4....2....1 ..0....4....3....5....1....4....4....2....0....2....3....2....4....0....3....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 8 of A243519.
Formula
Empirical: a(n) = 23*a(n-1) - 212*a(n-2) + 1010*a(n-3) - 2669*a(n-4) + 3887*a(n-5) - 2878*a(n-6) + 840*a(n-7).
Empirical g.f.: x*(3 - 64*x + 531*x^2 - 2175*x^3 + 4579*x^4 - 4607*x^5 + 1680*x^6) / ((1 - x)^2*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)*(1 - 7*x)). - Colin Barker, Nov 02 2018