A243519 T(n,k)=Number of length n+2 0..k arrays with no three elements in a row with pattern aba or abb (with a!=b) and new values 0..k introduced in 0..k order.
2, 3, 2, 3, 4, 2, 3, 5, 5, 2, 3, 5, 9, 6, 2, 3, 5, 10, 17, 7, 2, 3, 5, 10, 24, 33, 8, 2, 3, 5, 10, 25, 65, 65, 9, 2, 3, 5, 10, 25, 76, 187, 129, 10, 2, 3, 5, 10, 25, 77, 263, 552, 257, 11, 2, 3, 5, 10, 25, 77, 279, 978, 1646, 513, 12, 2, 3, 5, 10, 25, 77, 280, 1134, 3773, 4927, 1025, 13
Offset: 1
Examples
All solutions for n=3 k=4 ..0....0....0....0....0....0....0....0....0....0 ..1....1....0....1....0....0....1....0....0....1 ..2....2....0....2....1....1....2....0....0....2 ..3....0....0....3....2....2....3....1....0....0 ..4....1....0....0....0....3....1....2....1....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-2)
k=3: a(n) = 3*a(n-1) -2*a(n-2)
k=4: a(n) = 5*a(n-1) -7*a(n-2) +3*a(n-3)
k=5: a(n) = 8*a(n-1) -21*a(n-2) +22*a(n-3) -8*a(n-4)
k=6: a(n) = 12*a(n-1) -52*a(n-2) +102*a(n-3) -91*a(n-4) +30*a(n-5)
k=7: a(n) = 17*a(n-1) -111*a(n-2) +355*a(n-3) -584*a(n-4) +468*a(n-5) -144*a(n-6)
k=8: a(n) = 23*a(n-1) -212*a(n-2) +1010*a(n-3) -2669*a(n-4) +3887*a(n-5) -2878*a(n-6) +840*a(n-7)
k=9: a(n) = 30*a(n-1) -372*a(n-2) +2478*a(n-3) -9639*a(n-4) +22260*a(n-5) -29588*a(n-6) +20592*a(n-7) -5760*a(n-8)
Comments