cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243519 T(n,k)=Number of length n+2 0..k arrays with no three elements in a row with pattern aba or abb (with a!=b) and new values 0..k introduced in 0..k order.

Original entry on oeis.org

2, 3, 2, 3, 4, 2, 3, 5, 5, 2, 3, 5, 9, 6, 2, 3, 5, 10, 17, 7, 2, 3, 5, 10, 24, 33, 8, 2, 3, 5, 10, 25, 65, 65, 9, 2, 3, 5, 10, 25, 76, 187, 129, 10, 2, 3, 5, 10, 25, 77, 263, 552, 257, 11, 2, 3, 5, 10, 25, 77, 279, 978, 1646, 513, 12, 2, 3, 5, 10, 25, 77, 280, 1134, 3773, 4927, 1025, 13
Offset: 1

Views

Author

R. H. Hardin, Jun 05 2014

Keywords

Comments

Table starts
.2..3....3.....3.....3......3......3......3......3......3......3......3......3
.2..4....5.....5.....5......5......5......5......5......5......5......5......5
.2..5....9....10....10.....10.....10.....10.....10.....10.....10.....10.....10
.2..6...17....24....25.....25.....25.....25.....25.....25.....25.....25.....25
.2..7...33....65....76.....77.....77.....77.....77.....77.....77.....77.....77
.2..8...65...187...263....279....280....280....280....280....280....280....280
.2..9..129...552...978...1134...1156...1157...1157...1157...1157...1157...1157
.2.10..257..1646..3773...4979...5267...5296...5297...5297...5297...5297...5297
.2.11..513..4927.14824..22981..25915..26406..26443..26444..26444..26444..26444
.2.12.1025.14769.58771.109453.135214.141585.142372.142418.142419.142419.142419

Examples

			All solutions for n=3 k=4
..0....0....0....0....0....0....0....0....0....0
..1....1....0....1....0....0....1....0....0....1
..2....2....0....2....1....1....2....0....0....2
..3....0....0....3....2....2....3....1....0....0
..4....1....0....0....0....3....1....2....1....3
		

Crossrefs

Column 3 is A000051
Diagonal is A005001(n+1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-2)
k=3: a(n) = 3*a(n-1) -2*a(n-2)
k=4: a(n) = 5*a(n-1) -7*a(n-2) +3*a(n-3)
k=5: a(n) = 8*a(n-1) -21*a(n-2) +22*a(n-3) -8*a(n-4)
k=6: a(n) = 12*a(n-1) -52*a(n-2) +102*a(n-3) -91*a(n-4) +30*a(n-5)
k=7: a(n) = 17*a(n-1) -111*a(n-2) +355*a(n-3) -584*a(n-4) +468*a(n-5) -144*a(n-6)
k=8: a(n) = 23*a(n-1) -212*a(n-2) +1010*a(n-3) -2669*a(n-4) +3887*a(n-5) -2878*a(n-6) +840*a(n-7)
k=9: a(n) = 30*a(n-1) -372*a(n-2) +2478*a(n-3) -9639*a(n-4) +22260*a(n-5) -29588*a(n-6) +20592*a(n-7) -5760*a(n-8)